aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--klippy/cartesian.py198
-rw-r--r--klippy/klippy.py4
-rw-r--r--klippy/toolhead.py200
3 files changed, 205 insertions, 197 deletions
diff --git a/klippy/cartesian.py b/klippy/cartesian.py
index 487e47b7..8be83a71 100644
--- a/klippy/cartesian.py
+++ b/klippy/cartesian.py
@@ -1,14 +1,10 @@
-# Code for handling cartesian (standard x, y, z planes) moves
+# Code for handling the kinematics of cartesian robots
#
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
-import math, logging, time
-import lookahead, stepper, homing
-
-# Common suffixes: _d is distance (in mm), _v is velocity (in
-# mm/second), _t is time (in seconds), _r is ratio (scalar between
-# 0.0 and 1.0)
+import logging
+import stepper, homing
StepList = (0, 1, 2, 3)
@@ -97,191 +93,3 @@ class CartKinematics:
so.step_sqrt(
decel_steps, step_offset, clock_offset + decel_clock_offset
, decel_sqrt_offset, -accel_multiplier)
-
-class Move:
- def __init__(self, toolhead, pos, move_d, axes_d, speed, accel):
- self.toolhead = toolhead
- self.pos = tuple(pos)
- self.move_d = move_d
- self.axes_d = axes_d
- self.accel = accel
- self.junction_max = speed**2
- self.junction_delta = 2.0 * move_d * accel
- self.junction_start_max = 0.
- def calc_junction(self, prev_move):
- # Find max start junction velocity using approximated
- # centripetal velocity as described at:
- # https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/
- if not prev_move.move_d:
- return
- junction_cos_theta = -((self.axes_d[0] * prev_move.axes_d[0]
- + self.axes_d[1] * prev_move.axes_d[1])
- / (self.move_d * prev_move.move_d))
- if junction_cos_theta > 0.999999:
- return
- junction_cos_theta = max(junction_cos_theta, -0.999999)
- sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta));
- R = self.toolhead.junction_deviation * sin_theta_d2 / (1. - sin_theta_d2)
- self.junction_start_max = min(
- R * self.accel, self.junction_max, prev_move.junction_max)
- def process(self, junction_start, junction_end):
- # Determine accel, cruise, and decel portions of the move
- junction_cruise = self.junction_max
- inv_junction_delta = 1. / self.junction_delta
- accel_r = (junction_cruise-junction_start) * inv_junction_delta
- decel_r = (junction_cruise-junction_end) * inv_junction_delta
- cruise_r = 1. - accel_r - decel_r
- if cruise_r < 0.:
- accel_r += 0.5 * cruise_r
- decel_r = 1.0 - accel_r
- cruise_r = 0.
- junction_cruise = junction_start + accel_r*self.junction_delta
- self.accel_r, self.cruise_r, self.decel_r = accel_r, cruise_r, decel_r
- # Determine the move velocities and time spent in each portion
- start_v = math.sqrt(junction_start)
- cruise_v = math.sqrt(junction_cruise)
- end_v = math.sqrt(junction_end)
- self.start_v, self.cruise_v, self.end_v = start_v, cruise_v, end_v
- accel_t = 2.0 * self.move_d * accel_r / (start_v + cruise_v)
- cruise_t = self.move_d * cruise_r / cruise_v
- decel_t = 2.0 * self.move_d * decel_r / (end_v + cruise_v)
- self.accel_t, self.cruise_t, self.decel_t = accel_t, cruise_t, decel_t
- # Generate step times for the move
- next_move_time = self.toolhead.get_next_move_time()
- self.toolhead.kin.move(next_move_time, self)
- self.toolhead.update_move_time(accel_t + cruise_t + decel_t)
-
-STALL_TIME = 0.100
-
-class ToolHead:
- def __init__(self, printer, config):
- self.printer = printer
- self.reactor = printer.reactor
- self.kin = CartKinematics(printer, config)
- self.max_xy_speed, self.max_xy_accel = self.kin.get_max_xy_speed()
- self.junction_deviation = config.getfloat('junction_deviation', 0.02)
- dummy_move = Move(self, [0.]*4, 0., [0.]*4, 0., 0.)
- self.move_queue = lookahead.MoveQueue(dummy_move)
- self.commanded_pos = [0., 0., 0., 0.]
- # Print time tracking
- self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
- self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
- self.move_flush_time = config.getfloat('move_flush_time', 0.050)
- self.motor_off_delay = config.getfloat('motor_off_time', 60.000)
- self.print_time = 0.
- self.print_time_stall = 0
- self.motor_off_time = self.reactor.NEVER
- self.flush_timer = self.reactor.register_timer(self.flush_handler)
- def build_config(self):
- self.kin.build_config()
- # Print time tracking
- def update_move_time(self, movetime):
- self.print_time += movetime
- flush_to_time = self.print_time - self.move_flush_time
- self.printer.mcu.flush_moves(flush_to_time)
- def get_next_move_time(self):
- if not self.print_time:
- self.print_time = self.buffer_time_low + STALL_TIME
- curtime = time.time()
- self.printer.mcu.set_print_start_time(curtime)
- self.reactor.update_timer(self.flush_timer, self.reactor.NOW)
- return self.print_time
- def get_last_move_time(self):
- self.move_queue.flush()
- return self.get_next_move_time()
- def reset_motor_off_time(self, eventtime):
- self.motor_off_time = eventtime + self.motor_off_delay
- def reset_print_time(self):
- self.move_queue.flush()
- self.printer.mcu.flush_moves(self.print_time)
- self.print_time = 0.
- self.reset_motor_off_time(time.time())
- self.reactor.update_timer(self.flush_timer, self.motor_off_time)
- def check_busy(self, eventtime):
- if not self.print_time:
- # XXX - find better way to flush initial move_queue items
- if self.move_queue.queue:
- self.reactor.update_timer(self.flush_timer, eventtime + 0.100)
- return False
- buffer_time = self.printer.mcu.get_print_buffer_time(
- eventtime, self.print_time)
- return buffer_time > self.buffer_time_high
- def flush_handler(self, eventtime):
- if not self.print_time:
- self.move_queue.flush()
- if not self.print_time:
- if eventtime >= self.motor_off_time:
- self.motor_off()
- self.reset_print_time()
- self.motor_off_time = self.reactor.NEVER
- return self.motor_off_time
- print_time = self.print_time
- buffer_time = self.printer.mcu.get_print_buffer_time(
- eventtime, print_time)
- if buffer_time > self.buffer_time_low:
- return eventtime + buffer_time - self.buffer_time_low
- self.move_queue.flush()
- if print_time != self.print_time:
- self.print_time_stall += 1
- self.dwell(self.buffer_time_low + STALL_TIME)
- return self.reactor.NOW
- self.reset_print_time()
- return self.motor_off_time
- def stats(self, eventtime):
- buffer_time = 0.
- if self.print_time:
- buffer_time = self.printer.mcu.get_print_buffer_time(
- eventtime, self.print_time)
- return "print_time=%.3f buffer_time=%.3f print_time_stall=%d" % (
- self.print_time, buffer_time, self.print_time_stall)
- # Movement commands
- def get_position(self):
- return list(self.commanded_pos)
- def set_position(self, newpos):
- self.move_queue.flush()
- self.commanded_pos[:] = newpos
- self.kin.set_position(newpos)
- def _move_with_z(self, newpos, axes_d, speed):
- self.move_queue.flush()
- move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
- # Limit velocity and accel to max for each stepper
- kin_speed, kin_accel = self.kin.get_max_speed(axes_d, move_d)
- speed = min(speed, self.max_xy_speed, kin_speed)
- accel = min(self.max_xy_accel, kin_accel)
- # Generate and execute move
- move = Move(self, newpos, move_d, axes_d, speed, accel)
- move.process(0., 0.)
- def _move_only_e(self, newpos, axes_d, speed):
- self.move_queue.flush()
- kin_speed, kin_accel = self.kin.get_max_e_speed()
- speed = min(speed, self.max_xy_speed, kin_speed)
- accel = min(self.max_xy_accel, kin_accel)
- move = Move(self, newpos, abs(axes_d[3]), axes_d, speed, accel)
- move.process(0., 0.)
- def move(self, newpos, speed, sloppy=False):
- axes_d = [newpos[i] - self.commanded_pos[i] for i in StepList]
- self.commanded_pos[:] = newpos
- if axes_d[2]:
- self._move_with_z(newpos, axes_d, speed)
- return
- move_d = math.sqrt(axes_d[0]**2 + axes_d[1]**2)
- if not move_d:
- if axes_d[3]:
- self._move_only_e(newpos, axes_d, speed)
- return
- # Common xy move - create move and queue it
- speed = min(speed, self.max_xy_speed)
- move = Move(self, newpos, move_d, axes_d, speed, self.max_xy_accel)
- move.calc_junction(self.move_queue.prev_move())
- self.move_queue.add_move(move)
- def home(self, axis):
- return self.kin.home(self, axis)
- def dwell(self, delay):
- self.get_last_move_time()
- self.update_move_time(delay)
- def motor_off(self):
- self.dwell(STALL_TIME)
- last_move_time = self.get_last_move_time()
- self.kin.motor_off(last_move_time)
- self.dwell(STALL_TIME)
- logging.debug('; Max time of %f' % (last_move_time,))
diff --git a/klippy/klippy.py b/klippy/klippy.py
index a8d50c5e..421a6099 100644
--- a/klippy/klippy.py
+++ b/klippy/klippy.py
@@ -5,7 +5,7 @@
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import sys, optparse, ConfigParser, logging, time, threading
-import gcode, cartesian, util, mcu, fan, heater, reactor
+import gcode, toolhead, util, mcu, fan, heater, reactor
class ConfigWrapper:
def __init__(self, printer, section):
@@ -58,7 +58,7 @@ class Printer:
if self.fileconfig.has_section('heater_bed'):
self.objects['heater_bed'] = heater.PrinterHeater(
self, ConfigWrapper(self, 'heater_bed'))
- self.objects['toolhead'] = cartesian.ToolHead(
+ self.objects['toolhead'] = toolhead.ToolHead(
self, self._pconfig)
def stats(self, eventtime):
diff --git a/klippy/toolhead.py b/klippy/toolhead.py
new file mode 100644
index 00000000..b89ef2f3
--- /dev/null
+++ b/klippy/toolhead.py
@@ -0,0 +1,200 @@
+# Code for coordinating events on the printer toolhead
+#
+# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
+#
+# This file may be distributed under the terms of the GNU GPLv3 license.
+import math, logging, time
+import lookahead, cartesian
+
+# Common suffixes: _d is distance (in mm), _v is velocity (in
+# mm/second), _t is time (in seconds), _r is ratio (scalar between
+# 0.0 and 1.0)
+
+class Move:
+ def __init__(self, toolhead, pos, move_d, axes_d, speed, accel):
+ self.toolhead = toolhead
+ self.pos = tuple(pos)
+ self.move_d = move_d
+ self.axes_d = axes_d
+ self.accel = accel
+ self.junction_max = speed**2
+ self.junction_delta = 2.0 * move_d * accel
+ self.junction_start_max = 0.
+ def calc_junction(self, prev_move):
+ # Find max start junction velocity using approximated
+ # centripetal velocity as described at:
+ # https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/
+ if not prev_move.move_d:
+ return
+ junction_cos_theta = -((self.axes_d[0] * prev_move.axes_d[0]
+ + self.axes_d[1] * prev_move.axes_d[1])
+ / (self.move_d * prev_move.move_d))
+ if junction_cos_theta > 0.999999:
+ return
+ junction_cos_theta = max(junction_cos_theta, -0.999999)
+ sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta));
+ R = self.toolhead.junction_deviation * sin_theta_d2 / (1. - sin_theta_d2)
+ self.junction_start_max = min(
+ R * self.accel, self.junction_max, prev_move.junction_max)
+ def process(self, junction_start, junction_end):
+ # Determine accel, cruise, and decel portions of the move
+ junction_cruise = self.junction_max
+ inv_junction_delta = 1. / self.junction_delta
+ accel_r = (junction_cruise-junction_start) * inv_junction_delta
+ decel_r = (junction_cruise-junction_end) * inv_junction_delta
+ cruise_r = 1. - accel_r - decel_r
+ if cruise_r < 0.:
+ accel_r += 0.5 * cruise_r
+ decel_r = 1.0 - accel_r
+ cruise_r = 0.
+ junction_cruise = junction_start + accel_r*self.junction_delta
+ self.accel_r, self.cruise_r, self.decel_r = accel_r, cruise_r, decel_r
+ # Determine the move velocities and time spent in each portion
+ start_v = math.sqrt(junction_start)
+ cruise_v = math.sqrt(junction_cruise)
+ end_v = math.sqrt(junction_end)
+ self.start_v, self.cruise_v, self.end_v = start_v, cruise_v, end_v
+ accel_t = 2.0 * self.move_d * accel_r / (start_v + cruise_v)
+ cruise_t = self.move_d * cruise_r / cruise_v
+ decel_t = 2.0 * self.move_d * decel_r / (end_v + cruise_v)
+ self.accel_t, self.cruise_t, self.decel_t = accel_t, cruise_t, decel_t
+ # Generate step times for the move
+ next_move_time = self.toolhead.get_next_move_time()
+ self.toolhead.kin.move(next_move_time, self)
+ self.toolhead.update_move_time(accel_t + cruise_t + decel_t)
+
+STALL_TIME = 0.100
+
+class ToolHead:
+ def __init__(self, printer, config):
+ self.printer = printer
+ self.reactor = printer.reactor
+ self.kin = cartesian.CartKinematics(printer, config)
+ self.max_xy_speed, self.max_xy_accel = self.kin.get_max_xy_speed()
+ self.junction_deviation = config.getfloat('junction_deviation', 0.02)
+ dummy_move = Move(self, [0.]*4, 0., [0.]*4, 0., 0.)
+ self.move_queue = lookahead.MoveQueue(dummy_move)
+ self.commanded_pos = [0., 0., 0., 0.]
+ # Print time tracking
+ self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
+ self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
+ self.move_flush_time = config.getfloat('move_flush_time', 0.050)
+ self.motor_off_delay = config.getfloat('motor_off_time', 60.000)
+ self.print_time = 0.
+ self.print_time_stall = 0
+ self.motor_off_time = self.reactor.NEVER
+ self.flush_timer = self.reactor.register_timer(self.flush_handler)
+ def build_config(self):
+ self.kin.build_config()
+ # Print time tracking
+ def update_move_time(self, movetime):
+ self.print_time += movetime
+ flush_to_time = self.print_time - self.move_flush_time
+ self.printer.mcu.flush_moves(flush_to_time)
+ def get_next_move_time(self):
+ if not self.print_time:
+ self.print_time = self.buffer_time_low + STALL_TIME
+ curtime = time.time()
+ self.printer.mcu.set_print_start_time(curtime)
+ self.reactor.update_timer(self.flush_timer, self.reactor.NOW)
+ return self.print_time
+ def get_last_move_time(self):
+ self.move_queue.flush()
+ return self.get_next_move_time()
+ def reset_motor_off_time(self, eventtime):
+ self.motor_off_time = eventtime + self.motor_off_delay
+ def reset_print_time(self):
+ self.move_queue.flush()
+ self.printer.mcu.flush_moves(self.print_time)
+ self.print_time = 0.
+ self.reset_motor_off_time(time.time())
+ self.reactor.update_timer(self.flush_timer, self.motor_off_time)
+ def check_busy(self, eventtime):
+ if not self.print_time:
+ # XXX - find better way to flush initial move_queue items
+ if self.move_queue.queue:
+ self.reactor.update_timer(self.flush_timer, eventtime + 0.100)
+ return False
+ buffer_time = self.printer.mcu.get_print_buffer_time(
+ eventtime, self.print_time)
+ return buffer_time > self.buffer_time_high
+ def flush_handler(self, eventtime):
+ if not self.print_time:
+ self.move_queue.flush()
+ if not self.print_time:
+ if eventtime >= self.motor_off_time:
+ self.motor_off()
+ self.reset_print_time()
+ self.motor_off_time = self.reactor.NEVER
+ return self.motor_off_time
+ print_time = self.print_time
+ buffer_time = self.printer.mcu.get_print_buffer_time(
+ eventtime, print_time)
+ if buffer_time > self.buffer_time_low:
+ return eventtime + buffer_time - self.buffer_time_low
+ self.move_queue.flush()
+ if print_time != self.print_time:
+ self.print_time_stall += 1
+ self.dwell(self.buffer_time_low + STALL_TIME)
+ return self.reactor.NOW
+ self.reset_print_time()
+ return self.motor_off_time
+ def stats(self, eventtime):
+ buffer_time = 0.
+ if self.print_time:
+ buffer_time = self.printer.mcu.get_print_buffer_time(
+ eventtime, self.print_time)
+ return "print_time=%.3f buffer_time=%.3f print_time_stall=%d" % (
+ self.print_time, buffer_time, self.print_time_stall)
+ # Movement commands
+ def get_position(self):
+ return list(self.commanded_pos)
+ def set_position(self, newpos):
+ self.move_queue.flush()
+ self.commanded_pos[:] = newpos
+ self.kin.set_position(newpos)
+ def _move_with_z(self, newpos, axes_d, speed):
+ self.move_queue.flush()
+ move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
+ # Limit velocity and accel to max for each stepper
+ kin_speed, kin_accel = self.kin.get_max_speed(axes_d, move_d)
+ speed = min(speed, self.max_xy_speed, kin_speed)
+ accel = min(self.max_xy_accel, kin_accel)
+ # Generate and execute move
+ move = Move(self, newpos, move_d, axes_d, speed, accel)
+ move.process(0., 0.)
+ def _move_only_e(self, newpos, axes_d, speed):
+ self.move_queue.flush()
+ kin_speed, kin_accel = self.kin.get_max_e_speed()
+ speed = min(speed, self.max_xy_speed, kin_speed)
+ accel = min(self.max_xy_accel, kin_accel)
+ move = Move(self, newpos, abs(axes_d[3]), axes_d, speed, accel)
+ move.process(0., 0.)
+ def move(self, newpos, speed, sloppy=False):
+ axes_d = [newpos[i] - self.commanded_pos[i]
+ for i in (0, 1, 2, 3)]
+ self.commanded_pos[:] = newpos
+ if axes_d[2]:
+ self._move_with_z(newpos, axes_d, speed)
+ return
+ move_d = math.sqrt(axes_d[0]**2 + axes_d[1]**2)
+ if not move_d:
+ if axes_d[3]:
+ self._move_only_e(newpos, axes_d, speed)
+ return
+ # Common xy move - create move and queue it
+ speed = min(speed, self.max_xy_speed)
+ move = Move(self, newpos, move_d, axes_d, speed, self.max_xy_accel)
+ move.calc_junction(self.move_queue.prev_move())
+ self.move_queue.add_move(move)
+ def home(self, axis):
+ return self.kin.home(self, axis)
+ def dwell(self, delay):
+ self.get_last_move_time()
+ self.update_move_time(delay)
+ def motor_off(self):
+ self.dwell(STALL_TIME)
+ last_move_time = self.get_last_move_time()
+ self.kin.motor_off(last_move_time)
+ self.dwell(STALL_TIME)
+ logging.debug('; Max time of %f' % (last_move_time,))