aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/cartesian.py
blob: 8be83a716ea3ad2010143c920f13368a63a2bb76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Code for handling the kinematics of cartesian robots
#
# Copyright (C) 2016  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import stepper, homing

StepList = (0, 1, 2, 3)

class CartKinematics:
    def __init__(self, printer, config):
        steppers = ['stepper_x', 'stepper_y', 'stepper_z', 'stepper_e']
        self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
                         for n in steppers]
        self.stepper_pos = [0, 0, 0, 0]
    def build_config(self):
        for stepper in self.steppers:
            stepper.build_config()
    def set_position(self, newpos):
        self.stepper_pos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
                            for i in StepList]
    def get_max_xy_speed(self):
        max_xy_speed = min(s.max_step_velocity*s.step_dist
                           for s in self.steppers[:2])
        max_xy_accel = min(s.max_step_accel*s.step_dist
                           for s in self.steppers[:2])
        return max_xy_speed, max_xy_accel
    def get_max_speed(self, axes_d, move_d):
        # Calculate max speed and accel for a given move
        velocity_factor = min(
            [self.steppers[i].max_step_velocity
             * self.steppers[i].step_dist / abs(axes_d[i])
             for i in StepList if axes_d[i]])
        accel_factor = min(
            [self.steppers[i].max_step_accel
             * self.steppers[i].step_dist / abs(axes_d[i])
             for i in StepList if axes_d[i]])
        return velocity_factor * move_d, accel_factor * move_d
    def get_max_e_speed(self):
        s = self.steppers[3]
        return s.max_step_velocity*s.step_dist, s.max_step_accel*s.step_dist
    def home(self, toolhead, axis):
        # Each axis is homed independently and in order
        homing_state = homing.Homing(toolhead, self.steppers) # XXX
        for a in axis:
            homing_state.plan_home(a)
        return homing_state
    def motor_off(self, move_time):
        for stepper in self.steppers:
            stepper.motor_enable(move_time, 0)
    def move(self, move_time, move):
        inv_accel = 1. / move.accel
        inv_cruise_v = 1. / move.cruise_v
        for i in StepList:
            new_step_pos = int(move.pos[i]*self.steppers[i].inv_step_dist + 0.5)
            steps = new_step_pos - self.stepper_pos[i]
            if not steps:
                continue
            self.stepper_pos[i] = new_step_pos
            sdir = 0
            if steps < 0:
                sdir = 1
                steps = -steps
            clock_offset, clock_freq, so = self.steppers[i].prep_move(
                sdir, move_time)

            step_dist = move.move_d / steps
            step_offset = 0.5

            # Acceleration steps
            #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
            accel_clock_offset = move.start_v * inv_accel * clock_freq
            accel_sqrt_offset = accel_clock_offset**2
            accel_multiplier = 2.0 * step_dist * inv_accel * clock_freq**2
            accel_steps = move.accel_r * steps
            step_offset = so.step_sqrt(
                accel_steps, step_offset, clock_offset - accel_clock_offset
                , accel_sqrt_offset, accel_multiplier)
            clock_offset += move.accel_t * clock_freq
            # Cruising steps
            #t = pos/cruise_v
            cruise_multiplier = step_dist * inv_cruise_v * clock_freq
            cruise_steps = move.cruise_r * steps
            step_offset = so.step_factor(
                cruise_steps, step_offset, clock_offset, cruise_multiplier)
            clock_offset += move.cruise_t * clock_freq
            # Deceleration steps
            #t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
            decel_clock_offset = move.cruise_v * inv_accel * clock_freq
            decel_sqrt_offset = decel_clock_offset**2
            decel_steps = move.decel_r * steps
            so.step_sqrt(
                decel_steps, step_offset, clock_offset + decel_clock_offset
                , decel_sqrt_offset, -accel_multiplier)