aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/cartesian.py
blob: 487e47b761ed7223400f6ad5398315c439c74c0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Code for handling cartesian (standard x, y, z planes) moves
#
# Copyright (C) 2016  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging, time
import lookahead, stepper, homing

# Common suffixes: _d is distance (in mm), _v is velocity (in
#   mm/second), _t is time (in seconds), _r is ratio (scalar between
#   0.0 and 1.0)

StepList = (0, 1, 2, 3)

class CartKinematics:
    def __init__(self, printer, config):
        steppers = ['stepper_x', 'stepper_y', 'stepper_z', 'stepper_e']
        self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
                         for n in steppers]
        self.stepper_pos = [0, 0, 0, 0]
    def build_config(self):
        for stepper in self.steppers:
            stepper.build_config()
    def set_position(self, newpos):
        self.stepper_pos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
                            for i in StepList]
    def get_max_xy_speed(self):
        max_xy_speed = min(s.max_step_velocity*s.step_dist
                           for s in self.steppers[:2])
        max_xy_accel = min(s.max_step_accel*s.step_dist
                           for s in self.steppers[:2])
        return max_xy_speed, max_xy_accel
    def get_max_speed(self, axes_d, move_d):
        # Calculate max speed and accel for a given move
        velocity_factor = min(
            [self.steppers[i].max_step_velocity
             * self.steppers[i].step_dist / abs(axes_d[i])
             for i in StepList if axes_d[i]])
        accel_factor = min(
            [self.steppers[i].max_step_accel
             * self.steppers[i].step_dist / abs(axes_d[i])
             for i in StepList if axes_d[i]])
        return velocity_factor * move_d, accel_factor * move_d
    def get_max_e_speed(self):
        s = self.steppers[3]
        return s.max_step_velocity*s.step_dist, s.max_step_accel*s.step_dist
    def home(self, toolhead, axis):
        # Each axis is homed independently and in order
        homing_state = homing.Homing(toolhead, self.steppers) # XXX
        for a in axis:
            homing_state.plan_home(a)
        return homing_state
    def motor_off(self, move_time):
        for stepper in self.steppers:
            stepper.motor_enable(move_time, 0)
    def move(self, move_time, move):
        inv_accel = 1. / move.accel
        inv_cruise_v = 1. / move.cruise_v
        for i in StepList:
            new_step_pos = int(move.pos[i]*self.steppers[i].inv_step_dist + 0.5)
            steps = new_step_pos - self.stepper_pos[i]
            if not steps:
                continue
            self.stepper_pos[i] = new_step_pos
            sdir = 0
            if steps < 0:
                sdir = 1
                steps = -steps
            clock_offset, clock_freq, so = self.steppers[i].prep_move(
                sdir, move_time)

            step_dist = move.move_d / steps
            step_offset = 0.5

            # Acceleration steps
            #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
            accel_clock_offset = move.start_v * inv_accel * clock_freq
            accel_sqrt_offset = accel_clock_offset**2
            accel_multiplier = 2.0 * step_dist * inv_accel * clock_freq**2
            accel_steps = move.accel_r * steps
            step_offset = so.step_sqrt(
                accel_steps, step_offset, clock_offset - accel_clock_offset
                , accel_sqrt_offset, accel_multiplier)
            clock_offset += move.accel_t * clock_freq
            # Cruising steps
            #t = pos/cruise_v
            cruise_multiplier = step_dist * inv_cruise_v * clock_freq
            cruise_steps = move.cruise_r * steps
            step_offset = so.step_factor(
                cruise_steps, step_offset, clock_offset, cruise_multiplier)
            clock_offset += move.cruise_t * clock_freq
            # Deceleration steps
            #t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
            decel_clock_offset = move.cruise_v * inv_accel * clock_freq
            decel_sqrt_offset = decel_clock_offset**2
            decel_steps = move.decel_r * steps
            so.step_sqrt(
                decel_steps, step_offset, clock_offset + decel_clock_offset
                , decel_sqrt_offset, -accel_multiplier)

class Move:
    def __init__(self, toolhead, pos, move_d, axes_d, speed, accel):
        self.toolhead = toolhead
        self.pos = tuple(pos)
        self.move_d = move_d
        self.axes_d = axes_d
        self.accel = accel
        self.junction_max = speed**2
        self.junction_delta = 2.0 * move_d * accel
        self.junction_start_max = 0.
    def calc_junction(self, prev_move):
        # Find max start junction velocity using approximated
        # centripetal velocity as described at:
        # https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/
        if not prev_move.move_d:
            return
        junction_cos_theta = -((self.axes_d[0] * prev_move.axes_d[0]
                                + self.axes_d[1] * prev_move.axes_d[1])
                               / (self.move_d * prev_move.move_d))
        if junction_cos_theta > 0.999999:
            return
        junction_cos_theta = max(junction_cos_theta, -0.999999)
        sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta));
        R = self.toolhead.junction_deviation * sin_theta_d2 / (1. - sin_theta_d2)
        self.junction_start_max = min(
            R * self.accel, self.junction_max, prev_move.junction_max)
    def process(self, junction_start, junction_end):
        # Determine accel, cruise, and decel portions of the move
        junction_cruise = self.junction_max
        inv_junction_delta = 1. / self.junction_delta
        accel_r = (junction_cruise-junction_start) * inv_junction_delta
        decel_r = (junction_cruise-junction_end) * inv_junction_delta
        cruise_r = 1. - accel_r - decel_r
        if cruise_r < 0.:
            accel_r += 0.5 * cruise_r
            decel_r = 1.0 - accel_r
            cruise_r = 0.
            junction_cruise = junction_start + accel_r*self.junction_delta
        self.accel_r, self.cruise_r, self.decel_r = accel_r, cruise_r, decel_r
        # Determine the move velocities and time spent in each portion
        start_v = math.sqrt(junction_start)
        cruise_v = math.sqrt(junction_cruise)
        end_v = math.sqrt(junction_end)
        self.start_v, self.cruise_v, self.end_v = start_v, cruise_v, end_v
        accel_t = 2.0 * self.move_d * accel_r / (start_v + cruise_v)
        cruise_t = self.move_d * cruise_r / cruise_v
        decel_t = 2.0 * self.move_d * decel_r / (end_v + cruise_v)
        self.accel_t, self.cruise_t, self.decel_t = accel_t, cruise_t, decel_t
        # Generate step times for the move
        next_move_time = self.toolhead.get_next_move_time()
        self.toolhead.kin.move(next_move_time, self)
        self.toolhead.update_move_time(accel_t + cruise_t + decel_t)

STALL_TIME = 0.100

class ToolHead:
    def __init__(self, printer, config):
        self.printer = printer
        self.reactor = printer.reactor
        self.kin = CartKinematics(printer, config)
        self.max_xy_speed, self.max_xy_accel = self.kin.get_max_xy_speed()
        self.junction_deviation = config.getfloat('junction_deviation', 0.02)
        dummy_move = Move(self, [0.]*4, 0., [0.]*4, 0., 0.)
        self.move_queue = lookahead.MoveQueue(dummy_move)
        self.commanded_pos = [0., 0., 0., 0.]
        # Print time tracking
        self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
        self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
        self.move_flush_time = config.getfloat('move_flush_time', 0.050)
        self.motor_off_delay = config.getfloat('motor_off_time', 60.000)
        self.print_time = 0.
        self.print_time_stall = 0
        self.motor_off_time = self.reactor.NEVER
        self.flush_timer = self.reactor.register_timer(self.flush_handler)
    def build_config(self):
        self.kin.build_config()
    # Print time tracking
    def update_move_time(self, movetime):
        self.print_time += movetime
        flush_to_time = self.print_time - self.move_flush_time
        self.printer.mcu.flush_moves(flush_to_time)
    def get_next_move_time(self):
        if not self.print_time:
            self.print_time = self.buffer_time_low + STALL_TIME
            curtime = time.time()
            self.printer.mcu.set_print_start_time(curtime)
            self.reactor.update_timer(self.flush_timer, self.reactor.NOW)
        return self.print_time
    def get_last_move_time(self):
        self.move_queue.flush()
        return self.get_next_move_time()
    def reset_motor_off_time(self, eventtime):
        self.motor_off_time = eventtime + self.motor_off_delay
    def reset_print_time(self):
        self.move_queue.flush()
        self.printer.mcu.flush_moves(self.print_time)
        self.print_time = 0.
        self.reset_motor_off_time(time.time())
        self.reactor.update_timer(self.flush_timer, self.motor_off_time)
    def check_busy(self, eventtime):
        if not self.print_time:
            # XXX - find better way to flush initial move_queue items
            if self.move_queue.queue:
                self.reactor.update_timer(self.flush_timer, eventtime + 0.100)
            return False
        buffer_time = self.printer.mcu.get_print_buffer_time(
            eventtime, self.print_time)
        return buffer_time > self.buffer_time_high
    def flush_handler(self, eventtime):
        if not self.print_time:
            self.move_queue.flush()
            if not self.print_time:
                if eventtime >= self.motor_off_time:
                    self.motor_off()
                    self.reset_print_time()
                    self.motor_off_time = self.reactor.NEVER
                return self.motor_off_time
        print_time = self.print_time
        buffer_time = self.printer.mcu.get_print_buffer_time(
            eventtime, print_time)
        if buffer_time > self.buffer_time_low:
            return eventtime + buffer_time - self.buffer_time_low
        self.move_queue.flush()
        if print_time != self.print_time:
            self.print_time_stall += 1
            self.dwell(self.buffer_time_low + STALL_TIME)
            return self.reactor.NOW
        self.reset_print_time()
        return self.motor_off_time
    def stats(self, eventtime):
        buffer_time = 0.
        if self.print_time:
            buffer_time = self.printer.mcu.get_print_buffer_time(
                eventtime, self.print_time)
        return "print_time=%.3f buffer_time=%.3f print_time_stall=%d" % (
            self.print_time, buffer_time, self.print_time_stall)
    # Movement commands
    def get_position(self):
        return list(self.commanded_pos)
    def set_position(self, newpos):
        self.move_queue.flush()
        self.commanded_pos[:] = newpos
        self.kin.set_position(newpos)
    def _move_with_z(self, newpos, axes_d, speed):
        self.move_queue.flush()
        move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
        # Limit velocity and accel to max for each stepper
        kin_speed, kin_accel = self.kin.get_max_speed(axes_d, move_d)
        speed = min(speed, self.max_xy_speed, kin_speed)
        accel = min(self.max_xy_accel, kin_accel)
        # Generate and execute move
        move = Move(self, newpos, move_d, axes_d, speed, accel)
        move.process(0., 0.)
    def _move_only_e(self, newpos, axes_d, speed):
        self.move_queue.flush()
        kin_speed, kin_accel = self.kin.get_max_e_speed()
        speed = min(speed, self.max_xy_speed, kin_speed)
        accel = min(self.max_xy_accel, kin_accel)
        move = Move(self, newpos, abs(axes_d[3]), axes_d, speed, accel)
        move.process(0., 0.)
    def move(self, newpos, speed, sloppy=False):
        axes_d = [newpos[i] - self.commanded_pos[i] for i in StepList]
        self.commanded_pos[:] = newpos
        if axes_d[2]:
            self._move_with_z(newpos, axes_d, speed)
            return
        move_d = math.sqrt(axes_d[0]**2 + axes_d[1]**2)
        if not move_d:
            if axes_d[3]:
                self._move_only_e(newpos, axes_d, speed)
            return
        # Common xy move - create move and queue it
        speed = min(speed, self.max_xy_speed)
        move = Move(self, newpos, move_d, axes_d, speed, self.max_xy_accel)
        move.calc_junction(self.move_queue.prev_move())
        self.move_queue.add_move(move)
    def home(self, axis):
        return self.kin.home(self, axis)
    def dwell(self, delay):
        self.get_last_move_time()
        self.update_move_time(delay)
    def motor_off(self):
        self.dwell(STALL_TIME)
        last_move_time = self.get_last_move_time()
        self.kin.motor_off(last_move_time)
        self.dwell(STALL_TIME)
        logging.debug('; Max time of %f' % (last_move_time,))