1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
# Code for handling the kinematics of rotary delta robots
#
# Copyright (C) 2019-2021 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, mathutil, chelper
class RotaryDeltaKinematics:
def __init__(self, toolhead, config):
# Setup tower rails
stepper_configs = [config.getsection("stepper_" + a) for a in "abc"]
rail_a = stepper.LookupRail(
stepper_configs[0], need_position_minmax=False, units_in_radians=True
)
a_endstop = rail_a.get_homing_info().position_endstop
rail_b = stepper.LookupRail(
stepper_configs[1],
need_position_minmax=False,
default_position_endstop=a_endstop,
units_in_radians=True,
)
rail_c = stepper.LookupRail(
stepper_configs[2],
need_position_minmax=False,
default_position_endstop=a_endstop,
units_in_radians=True,
)
self.rails = [rail_a, rail_b, rail_c]
# Read config
max_velocity, max_accel = toolhead.get_max_velocity()
self.max_z_velocity = config.getfloat(
"max_z_velocity", max_velocity, above=0.0, maxval=max_velocity
)
shoulder_radius = config.getfloat("shoulder_radius", above=0.0)
shoulder_height = config.getfloat("shoulder_height", above=0.0)
a_upper_arm = stepper_configs[0].getfloat("upper_arm_length", above=0.0)
upper_arms = [
sconfig.getfloat("upper_arm_length", a_upper_arm, above=0.0)
for sconfig in stepper_configs
]
a_lower_arm = stepper_configs[0].getfloat("lower_arm_length", above=0.0)
lower_arms = [
sconfig.getfloat("lower_arm_length", a_lower_arm, above=0.0)
for sconfig in stepper_configs
]
angles = [
sconfig.getfloat("angle", angle)
for sconfig, angle in zip(stepper_configs, [30.0, 150.0, 270.0])
]
# Setup rotary delta calibration helper
endstops = [rail.get_homing_info().position_endstop for rail in self.rails]
stepdists = [rail.get_steppers()[0].get_step_dist() for rail in self.rails]
self.calibration = RotaryDeltaCalibration(
shoulder_radius,
shoulder_height,
angles,
upper_arms,
lower_arms,
endstops,
stepdists,
)
# Setup iterative solver
for r, a, ua, la in zip(self.rails, angles, upper_arms, lower_arms):
r.setup_itersolve(
"rotary_delta_stepper_alloc",
shoulder_radius,
shoulder_height,
math.radians(a),
ua,
la,
)
for s in self.get_steppers():
s.set_trapq(toolhead.get_trapq())
toolhead.register_step_generator(s.generate_steps)
# Setup boundary checks
self.need_home = True
self.limit_xy2 = -1.0
eangles = [
r.calc_position_from_coord([0.0, 0.0, ep])
for r, ep in zip(self.rails, endstops)
]
self.home_position = tuple(self.calibration.actuator_to_cartesian(eangles))
self.max_z = min(endstops)
self.min_z = config.getfloat("minimum_z_position", 0, maxval=self.max_z)
min_ua = min([shoulder_radius + ua for ua in upper_arms])
min_la = min([la - shoulder_radius for la in lower_arms])
self.max_xy2 = min(min_ua, min_la) ** 2
arm_z = [self.calibration.elbow_coord(i, ea)[2] for i, ea in enumerate(eangles)]
self.limit_z = min([az - la for az, la in zip(arm_z, lower_arms)])
logging.info(
"Delta max build height %.2fmm (radius tapered above %.2fmm)"
% (self.max_z, self.limit_z)
)
max_xy = math.sqrt(self.max_xy2)
self.axes_min = toolhead.Coord(-max_xy, -max_xy, self.min_z, 0.0)
self.axes_max = toolhead.Coord(max_xy, max_xy, self.max_z, 0.0)
self.set_position([0.0, 0.0, 0.0], "")
def get_steppers(self):
return [s for rail in self.rails for s in rail.get_steppers()]
def calc_position(self, stepper_positions):
spos = [stepper_positions[rail.get_name()] for rail in self.rails]
return self.calibration.actuator_to_cartesian(spos)
def set_position(self, newpos, homing_axes):
for rail in self.rails:
rail.set_position(newpos)
self.limit_xy2 = -1.0
if homing_axes == "xyz":
self.need_home = False
def clear_homing_state(self, clear_axes):
# Clearing homing state for each axis individually is not implemented
if clear_axes:
self.limit_xy2 = -1
self.need_home = True
def home(self, homing_state):
# All axes are homed simultaneously
homing_state.set_axes([0, 1, 2])
forcepos = list(self.home_position)
# min_angles = [-.5 * math.pi] * 3
# forcepos[2] = self.calibration.actuator_to_cartesian(min_angles)[2]
forcepos[2] = -1.0
homing_state.home_rails(self.rails, forcepos, self.home_position)
def check_move(self, move):
end_pos = move.end_pos
end_xy2 = end_pos[0] ** 2 + end_pos[1] ** 2
if end_xy2 <= self.limit_xy2 and not move.axes_d[2]:
# Normal XY move
return
if self.need_home:
raise move.move_error("Must home first")
end_z = end_pos[2]
limit_xy2 = self.max_xy2
if end_z > self.limit_z:
limit_xy2 = min(limit_xy2, (self.max_z - end_z) ** 2)
if end_xy2 > limit_xy2 or end_z > self.max_z or end_z < self.min_z:
# Move out of range - verify not a homing move
if (
end_pos[:2] != self.home_position[:2]
or end_z < self.min_z
or end_z > self.home_position[2]
):
raise move.move_error()
limit_xy2 = -1.0
if move.axes_d[2]:
move.limit_speed(self.max_z_velocity, move.accel)
limit_xy2 = -1.0
self.limit_xy2 = limit_xy2
def get_status(self, eventtime):
return {
"homed_axes": "" if self.need_home else "xyz",
"axis_minimum": self.axes_min,
"axis_maximum": self.axes_max,
}
def get_calibration(self):
return self.calibration
# Rotary delta parameter calibration for DELTA_CALIBRATE tool
class RotaryDeltaCalibration:
def __init__(
self,
shoulder_radius,
shoulder_height,
angles,
upper_arms,
lower_arms,
endstops,
stepdists,
):
self.shoulder_radius = shoulder_radius
self.shoulder_height = shoulder_height
self.angles = angles
self.upper_arms = upper_arms
self.lower_arms = lower_arms
self.endstops = endstops
self.stepdists = stepdists
# Calculate the absolute angle of each endstop
ffi_main, self.ffi_lib = chelper.get_ffi()
self.sks = [
ffi_main.gc(
self.ffi_lib.rotary_delta_stepper_alloc(
shoulder_radius, shoulder_height, math.radians(a), ua, la
),
self.ffi_lib.free,
)
for a, ua, la in zip(angles, upper_arms, lower_arms)
]
self.abs_endstops = [
self.ffi_lib.itersolve_calc_position_from_coord(sk, 0.0, 0.0, es)
for sk, es in zip(self.sks, endstops)
]
def coordinate_descent_params(self, is_extended):
# Determine adjustment parameters (for use with coordinate_descent)
adj_params = ("shoulder_height", "endstop_a", "endstop_b", "endstop_c")
if is_extended:
adj_params += ("shoulder_radius", "angle_a", "angle_b")
params = {
"shoulder_radius": self.shoulder_radius,
"shoulder_height": self.shoulder_height,
}
for i, axis in enumerate("abc"):
params["angle_" + axis] = self.angles[i]
params["upper_arm_" + axis] = self.upper_arms[i]
params["lower_arm_" + axis] = self.lower_arms[i]
params["endstop_" + axis] = self.endstops[i]
params["stepdist_" + axis] = self.stepdists[i]
return adj_params, params
def new_calibration(self, params):
# Create a new calibration object from coordinate_descent params
shoulder_radius = params["shoulder_radius"]
shoulder_height = params["shoulder_height"]
angles = [params["angle_" + a] for a in "abc"]
upper_arms = [params["upper_arm_" + a] for a in "abc"]
lower_arms = [params["lower_arm_" + a] for a in "abc"]
endstops = [params["endstop_" + a] for a in "abc"]
stepdists = [params["stepdist_" + a] for a in "abc"]
return RotaryDeltaCalibration(
shoulder_radius,
shoulder_height,
angles,
upper_arms,
lower_arms,
endstops,
stepdists,
)
def elbow_coord(self, elbow_id, spos):
# Calculate elbow position in coordinate system at shoulder joint
sj_elbow_x = self.upper_arms[elbow_id] * math.cos(spos)
sj_elbow_y = self.upper_arms[elbow_id] * math.sin(spos)
# Shift and rotate to main cartesian coordinate system
angle = math.radians(self.angles[elbow_id])
x = (sj_elbow_x + self.shoulder_radius) * math.cos(angle)
y = (sj_elbow_x + self.shoulder_radius) * math.sin(angle)
z = sj_elbow_y + self.shoulder_height
return (x, y, z)
def actuator_to_cartesian(self, spos):
sphere_coords = [self.elbow_coord(i, sp) for i, sp in enumerate(spos)]
lower_arm2 = [la**2 for la in self.lower_arms]
return mathutil.trilateration(sphere_coords, lower_arm2)
def get_position_from_stable(self, stable_position):
# Return cartesian coordinates for the given stable_position
spos = [
ea - sp * sd
for ea, sp, sd in zip(self.abs_endstops, stable_position, self.stepdists)
]
return self.actuator_to_cartesian(spos)
def calc_stable_position(self, coord):
# Return a stable_position from a cartesian coordinate
pos = [
self.ffi_lib.itersolve_calc_position_from_coord(
sk, coord[0], coord[1], coord[2]
)
for sk in self.sks
]
return [
(ep - sp) / sd for sd, ep, sp in zip(self.stepdists, self.abs_endstops, pos)
]
def save_state(self, configfile):
# Save the current parameters (for use with SAVE_CONFIG)
configfile.set("printer", "shoulder_radius", "%.6f" % (self.shoulder_radius,))
configfile.set("printer", "shoulder_height", "%.6f" % (self.shoulder_height,))
for i, axis in enumerate("abc"):
configfile.set("stepper_" + axis, "angle", "%.6f" % (self.angles[i],))
configfile.set(
"stepper_" + axis, "position_endstop", "%.6f" % (self.endstops[i],)
)
gcode = configfile.get_printer().lookup_object("gcode")
gcode.respond_info(
"stepper_a: position_endstop: %.6f angle: %.6f\n"
"stepper_b: position_endstop: %.6f angle: %.6f\n"
"stepper_c: position_endstop: %.6f angle: %.6f\n"
"shoulder_radius: %.6f shoulder_height: %.6f"
% (
self.endstops[0],
self.angles[0],
self.endstops[1],
self.angles[1],
self.endstops[2],
self.angles[2],
self.shoulder_radius,
self.shoulder_height,
)
)
def load_kinematics(toolhead, config):
return RotaryDeltaKinematics(toolhead, config)
|