diff options
Diffstat (limited to 'klippy/kinematics/rotary_delta.py')
-rw-r--r-- | klippy/kinematics/rotary_delta.py | 277 |
1 files changed, 176 insertions, 101 deletions
diff --git a/klippy/kinematics/rotary_delta.py b/klippy/kinematics/rotary_delta.py index 732a89a8..7bc3a4d8 100644 --- a/klippy/kinematics/rotary_delta.py +++ b/klippy/kinematics/rotary_delta.py @@ -6,102 +6,130 @@ import math, logging import stepper, mathutil, chelper + class RotaryDeltaKinematics: def __init__(self, toolhead, config): # Setup tower rails - stepper_configs = [config.getsection('stepper_' + a) for a in 'abc'] + stepper_configs = [config.getsection("stepper_" + a) for a in "abc"] rail_a = stepper.LookupRail( - stepper_configs[0], need_position_minmax=False, - units_in_radians=True) + stepper_configs[0], need_position_minmax=False, units_in_radians=True + ) a_endstop = rail_a.get_homing_info().position_endstop rail_b = stepper.LookupRail( - stepper_configs[1], need_position_minmax=False, - default_position_endstop=a_endstop, units_in_radians=True) + stepper_configs[1], + need_position_minmax=False, + default_position_endstop=a_endstop, + units_in_radians=True, + ) rail_c = stepper.LookupRail( - stepper_configs[2], need_position_minmax=False, - default_position_endstop=a_endstop, units_in_radians=True) + stepper_configs[2], + need_position_minmax=False, + default_position_endstop=a_endstop, + units_in_radians=True, + ) self.rails = [rail_a, rail_b, rail_c] # Read config max_velocity, max_accel = toolhead.get_max_velocity() - self.max_z_velocity = config.getfloat('max_z_velocity', max_velocity, - above=0., maxval=max_velocity) - shoulder_radius = config.getfloat('shoulder_radius', above=0.) - shoulder_height = config.getfloat('shoulder_height', above=0.) - a_upper_arm = stepper_configs[0].getfloat('upper_arm_length', above=0.) + self.max_z_velocity = config.getfloat( + "max_z_velocity", max_velocity, above=0.0, maxval=max_velocity + ) + shoulder_radius = config.getfloat("shoulder_radius", above=0.0) + shoulder_height = config.getfloat("shoulder_height", above=0.0) + a_upper_arm = stepper_configs[0].getfloat("upper_arm_length", above=0.0) upper_arms = [ - sconfig.getfloat('upper_arm_length', a_upper_arm, above=0.) - for sconfig in stepper_configs] - a_lower_arm = stepper_configs[0].getfloat('lower_arm_length', above=0.) + sconfig.getfloat("upper_arm_length", a_upper_arm, above=0.0) + for sconfig in stepper_configs + ] + a_lower_arm = stepper_configs[0].getfloat("lower_arm_length", above=0.0) lower_arms = [ - sconfig.getfloat('lower_arm_length', a_lower_arm, above=0.) - for sconfig in stepper_configs] - angles = [sconfig.getfloat('angle', angle) - for sconfig, angle in zip(stepper_configs, [30., 150., 270.])] + sconfig.getfloat("lower_arm_length", a_lower_arm, above=0.0) + for sconfig in stepper_configs + ] + angles = [ + sconfig.getfloat("angle", angle) + for sconfig, angle in zip(stepper_configs, [30.0, 150.0, 270.0]) + ] # Setup rotary delta calibration helper - endstops = [rail.get_homing_info().position_endstop - for rail in self.rails] - stepdists = [rail.get_steppers()[0].get_step_dist() - for rail in self.rails] + endstops = [rail.get_homing_info().position_endstop for rail in self.rails] + stepdists = [rail.get_steppers()[0].get_step_dist() for rail in self.rails] self.calibration = RotaryDeltaCalibration( - shoulder_radius, shoulder_height, angles, upper_arms, lower_arms, - endstops, stepdists) + shoulder_radius, + shoulder_height, + angles, + upper_arms, + lower_arms, + endstops, + stepdists, + ) # Setup iterative solver for r, a, ua, la in zip(self.rails, angles, upper_arms, lower_arms): - r.setup_itersolve('rotary_delta_stepper_alloc', - shoulder_radius, shoulder_height, - math.radians(a), ua, la) + r.setup_itersolve( + "rotary_delta_stepper_alloc", + shoulder_radius, + shoulder_height, + math.radians(a), + ua, + la, + ) for s in self.get_steppers(): s.set_trapq(toolhead.get_trapq()) toolhead.register_step_generator(s.generate_steps) # Setup boundary checks self.need_home = True - self.limit_xy2 = -1. - eangles = [r.calc_position_from_coord([0., 0., ep]) - for r, ep in zip(self.rails, endstops)] - self.home_position = tuple( - self.calibration.actuator_to_cartesian(eangles)) + self.limit_xy2 = -1.0 + eangles = [ + r.calc_position_from_coord([0.0, 0.0, ep]) + for r, ep in zip(self.rails, endstops) + ] + self.home_position = tuple(self.calibration.actuator_to_cartesian(eangles)) self.max_z = min(endstops) - self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z) + self.min_z = config.getfloat("minimum_z_position", 0, maxval=self.max_z) min_ua = min([shoulder_radius + ua for ua in upper_arms]) min_la = min([la - shoulder_radius for la in lower_arms]) - self.max_xy2 = min(min_ua, min_la)**2 - arm_z = [self.calibration.elbow_coord(i, ea)[2] - for i, ea in enumerate(eangles)] + self.max_xy2 = min(min_ua, min_la) ** 2 + arm_z = [self.calibration.elbow_coord(i, ea)[2] for i, ea in enumerate(eangles)] self.limit_z = min([az - la for az, la in zip(arm_z, lower_arms)]) logging.info( "Delta max build height %.2fmm (radius tapered above %.2fmm)" - % (self.max_z, self.limit_z)) + % (self.max_z, self.limit_z) + ) max_xy = math.sqrt(self.max_xy2) - self.axes_min = toolhead.Coord(-max_xy, -max_xy, self.min_z, 0.) - self.axes_max = toolhead.Coord(max_xy, max_xy, self.max_z, 0.) - self.set_position([0., 0., 0.], "") + self.axes_min = toolhead.Coord(-max_xy, -max_xy, self.min_z, 0.0) + self.axes_max = toolhead.Coord(max_xy, max_xy, self.max_z, 0.0) + self.set_position([0.0, 0.0, 0.0], "") + def get_steppers(self): return [s for rail in self.rails for s in rail.get_steppers()] + def calc_position(self, stepper_positions): spos = [stepper_positions[rail.get_name()] for rail in self.rails] return self.calibration.actuator_to_cartesian(spos) + def set_position(self, newpos, homing_axes): for rail in self.rails: rail.set_position(newpos) - self.limit_xy2 = -1. + self.limit_xy2 = -1.0 if homing_axes == "xyz": self.need_home = False + def clear_homing_state(self, clear_axes): # Clearing homing state for each axis individually is not implemented if clear_axes: self.limit_xy2 = -1 self.need_home = True + def home(self, homing_state): # All axes are homed simultaneously homing_state.set_axes([0, 1, 2]) forcepos = list(self.home_position) - #min_angles = [-.5 * math.pi] * 3 - #forcepos[2] = self.calibration.actuator_to_cartesian(min_angles)[2] - forcepos[2] = -1. + # min_angles = [-.5 * math.pi] * 3 + # forcepos[2] = self.calibration.actuator_to_cartesian(min_angles)[2] + forcepos[2] = -1.0 homing_state.home_rails(self.rails, forcepos, self.home_position) + def check_move(self, move): end_pos = move.end_pos - end_xy2 = end_pos[0]**2 + end_pos[1]**2 + end_xy2 = end_pos[0] ** 2 + end_pos[1] ** 2 if end_xy2 <= self.limit_xy2 and not move.axes_d[2]: # Normal XY move return @@ -110,30 +138,44 @@ class RotaryDeltaKinematics: end_z = end_pos[2] limit_xy2 = self.max_xy2 if end_z > self.limit_z: - limit_xy2 = min(limit_xy2, (self.max_z - end_z)**2) + limit_xy2 = min(limit_xy2, (self.max_z - end_z) ** 2) if end_xy2 > limit_xy2 or end_z > self.max_z or end_z < self.min_z: # Move out of range - verify not a homing move - if (end_pos[:2] != self.home_position[:2] - or end_z < self.min_z or end_z > self.home_position[2]): + if ( + end_pos[:2] != self.home_position[:2] + or end_z < self.min_z + or end_z > self.home_position[2] + ): raise move.move_error() - limit_xy2 = -1. + limit_xy2 = -1.0 if move.axes_d[2]: move.limit_speed(self.max_z_velocity, move.accel) - limit_xy2 = -1. + limit_xy2 = -1.0 self.limit_xy2 = limit_xy2 + def get_status(self, eventtime): return { - 'homed_axes': '' if self.need_home else 'xyz', - 'axis_minimum': self.axes_min, - 'axis_maximum': self.axes_max, + "homed_axes": "" if self.need_home else "xyz", + "axis_minimum": self.axes_min, + "axis_maximum": self.axes_max, } + def get_calibration(self): return self.calibration + # Rotary delta parameter calibration for DELTA_CALIBRATE tool class RotaryDeltaCalibration: - def __init__(self, shoulder_radius, shoulder_height, angles, - upper_arms, lower_arms, endstops, stepdists): + def __init__( + self, + shoulder_radius, + shoulder_height, + angles, + upper_arms, + lower_arms, + endstops, + stepdists, + ): self.shoulder_radius = shoulder_radius self.shoulder_height = shoulder_height self.angles = angles @@ -143,39 +185,56 @@ class RotaryDeltaCalibration: self.stepdists = stepdists # Calculate the absolute angle of each endstop ffi_main, self.ffi_lib = chelper.get_ffi() - self.sks = [ffi_main.gc(self.ffi_lib.rotary_delta_stepper_alloc( - shoulder_radius, shoulder_height, math.radians(a), ua, la), - self.ffi_lib.free) - for a, ua, la in zip(angles, upper_arms, lower_arms)] + self.sks = [ + ffi_main.gc( + self.ffi_lib.rotary_delta_stepper_alloc( + shoulder_radius, shoulder_height, math.radians(a), ua, la + ), + self.ffi_lib.free, + ) + for a, ua, la in zip(angles, upper_arms, lower_arms) + ] self.abs_endstops = [ - self.ffi_lib.itersolve_calc_position_from_coord(sk, 0., 0., es) - for sk, es in zip(self.sks, endstops)] + self.ffi_lib.itersolve_calc_position_from_coord(sk, 0.0, 0.0, es) + for sk, es in zip(self.sks, endstops) + ] + def coordinate_descent_params(self, is_extended): # Determine adjustment parameters (for use with coordinate_descent) - adj_params = ('shoulder_height', 'endstop_a', 'endstop_b', 'endstop_c') + adj_params = ("shoulder_height", "endstop_a", "endstop_b", "endstop_c") if is_extended: - adj_params += ('shoulder_radius', 'angle_a', 'angle_b') - params = { 'shoulder_radius': self.shoulder_radius, - 'shoulder_height': self.shoulder_height } - for i, axis in enumerate('abc'): - params['angle_'+axis] = self.angles[i] - params['upper_arm_'+axis] = self.upper_arms[i] - params['lower_arm_'+axis] = self.lower_arms[i] - params['endstop_'+axis] = self.endstops[i] - params['stepdist_'+axis] = self.stepdists[i] + adj_params += ("shoulder_radius", "angle_a", "angle_b") + params = { + "shoulder_radius": self.shoulder_radius, + "shoulder_height": self.shoulder_height, + } + for i, axis in enumerate("abc"): + params["angle_" + axis] = self.angles[i] + params["upper_arm_" + axis] = self.upper_arms[i] + params["lower_arm_" + axis] = self.lower_arms[i] + params["endstop_" + axis] = self.endstops[i] + params["stepdist_" + axis] = self.stepdists[i] return adj_params, params + def new_calibration(self, params): # Create a new calibration object from coordinate_descent params - shoulder_radius = params['shoulder_radius'] - shoulder_height = params['shoulder_height'] - angles = [params['angle_'+a] for a in 'abc'] - upper_arms = [params['upper_arm_'+a] for a in 'abc'] - lower_arms = [params['lower_arm_'+a] for a in 'abc'] - endstops = [params['endstop_'+a] for a in 'abc'] - stepdists = [params['stepdist_'+a] for a in 'abc'] + shoulder_radius = params["shoulder_radius"] + shoulder_height = params["shoulder_height"] + angles = [params["angle_" + a] for a in "abc"] + upper_arms = [params["upper_arm_" + a] for a in "abc"] + lower_arms = [params["lower_arm_" + a] for a in "abc"] + endstops = [params["endstop_" + a] for a in "abc"] + stepdists = [params["stepdist_" + a] for a in "abc"] return RotaryDeltaCalibration( - shoulder_radius, shoulder_height, angles, upper_arms, lower_arms, - endstops, stepdists) + shoulder_radius, + shoulder_height, + angles, + upper_arms, + lower_arms, + endstops, + stepdists, + ) + def elbow_coord(self, elbow_id, spos): # Calculate elbow position in coordinate system at shoulder joint sj_elbow_x = self.upper_arms[elbow_id] * math.cos(spos) @@ -186,43 +245,59 @@ class RotaryDeltaCalibration: y = (sj_elbow_x + self.shoulder_radius) * math.sin(angle) z = sj_elbow_y + self.shoulder_height return (x, y, z) + def actuator_to_cartesian(self, spos): sphere_coords = [self.elbow_coord(i, sp) for i, sp in enumerate(spos)] lower_arm2 = [la**2 for la in self.lower_arms] return mathutil.trilateration(sphere_coords, lower_arm2) + def get_position_from_stable(self, stable_position): # Return cartesian coordinates for the given stable_position - spos = [ea - sp * sd - for ea, sp, sd in zip(self.abs_endstops, stable_position, - self.stepdists)] + spos = [ + ea - sp * sd + for ea, sp, sd in zip(self.abs_endstops, stable_position, self.stepdists) + ] return self.actuator_to_cartesian(spos) + def calc_stable_position(self, coord): # Return a stable_position from a cartesian coordinate - pos = [ self.ffi_lib.itersolve_calc_position_from_coord( - sk, coord[0], coord[1], coord[2]) - for sk in self.sks ] - return [(ep - sp) / sd - for sd, ep, sp in zip(self.stepdists, self.abs_endstops, pos)] + pos = [ + self.ffi_lib.itersolve_calc_position_from_coord( + sk, coord[0], coord[1], coord[2] + ) + for sk in self.sks + ] + return [ + (ep - sp) / sd for sd, ep, sp in zip(self.stepdists, self.abs_endstops, pos) + ] + def save_state(self, configfile): # Save the current parameters (for use with SAVE_CONFIG) - configfile.set('printer', 'shoulder_radius', "%.6f" - % (self.shoulder_radius,)) - configfile.set('printer', 'shoulder_height', "%.6f" - % (self.shoulder_height,)) - for i, axis in enumerate('abc'): - configfile.set('stepper_'+axis, 'angle', "%.6f" % (self.angles[i],)) - configfile.set('stepper_'+axis, 'position_endstop', - "%.6f" % (self.endstops[i],)) + configfile.set("printer", "shoulder_radius", "%.6f" % (self.shoulder_radius,)) + configfile.set("printer", "shoulder_height", "%.6f" % (self.shoulder_height,)) + for i, axis in enumerate("abc"): + configfile.set("stepper_" + axis, "angle", "%.6f" % (self.angles[i],)) + configfile.set( + "stepper_" + axis, "position_endstop", "%.6f" % (self.endstops[i],) + ) gcode = configfile.get_printer().lookup_object("gcode") gcode.respond_info( "stepper_a: position_endstop: %.6f angle: %.6f\n" "stepper_b: position_endstop: %.6f angle: %.6f\n" "stepper_c: position_endstop: %.6f angle: %.6f\n" "shoulder_radius: %.6f shoulder_height: %.6f" - % (self.endstops[0], self.angles[0], - self.endstops[1], self.angles[1], - self.endstops[2], self.angles[2], - self.shoulder_radius, self.shoulder_height)) + % ( + self.endstops[0], + self.angles[0], + self.endstops[1], + self.angles[1], + self.endstops[2], + self.angles[2], + self.shoulder_radius, + self.shoulder_height, + ) + ) + def load_kinematics(toolhead, config): return RotaryDeltaKinematics(toolhead, config) |