aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/kinematics/rotary_delta.py
diff options
context:
space:
mode:
Diffstat (limited to 'klippy/kinematics/rotary_delta.py')
-rw-r--r--klippy/kinematics/rotary_delta.py277
1 files changed, 176 insertions, 101 deletions
diff --git a/klippy/kinematics/rotary_delta.py b/klippy/kinematics/rotary_delta.py
index 732a89a8..7bc3a4d8 100644
--- a/klippy/kinematics/rotary_delta.py
+++ b/klippy/kinematics/rotary_delta.py
@@ -6,102 +6,130 @@
import math, logging
import stepper, mathutil, chelper
+
class RotaryDeltaKinematics:
def __init__(self, toolhead, config):
# Setup tower rails
- stepper_configs = [config.getsection('stepper_' + a) for a in 'abc']
+ stepper_configs = [config.getsection("stepper_" + a) for a in "abc"]
rail_a = stepper.LookupRail(
- stepper_configs[0], need_position_minmax=False,
- units_in_radians=True)
+ stepper_configs[0], need_position_minmax=False, units_in_radians=True
+ )
a_endstop = rail_a.get_homing_info().position_endstop
rail_b = stepper.LookupRail(
- stepper_configs[1], need_position_minmax=False,
- default_position_endstop=a_endstop, units_in_radians=True)
+ stepper_configs[1],
+ need_position_minmax=False,
+ default_position_endstop=a_endstop,
+ units_in_radians=True,
+ )
rail_c = stepper.LookupRail(
- stepper_configs[2], need_position_minmax=False,
- default_position_endstop=a_endstop, units_in_radians=True)
+ stepper_configs[2],
+ need_position_minmax=False,
+ default_position_endstop=a_endstop,
+ units_in_radians=True,
+ )
self.rails = [rail_a, rail_b, rail_c]
# Read config
max_velocity, max_accel = toolhead.get_max_velocity()
- self.max_z_velocity = config.getfloat('max_z_velocity', max_velocity,
- above=0., maxval=max_velocity)
- shoulder_radius = config.getfloat('shoulder_radius', above=0.)
- shoulder_height = config.getfloat('shoulder_height', above=0.)
- a_upper_arm = stepper_configs[0].getfloat('upper_arm_length', above=0.)
+ self.max_z_velocity = config.getfloat(
+ "max_z_velocity", max_velocity, above=0.0, maxval=max_velocity
+ )
+ shoulder_radius = config.getfloat("shoulder_radius", above=0.0)
+ shoulder_height = config.getfloat("shoulder_height", above=0.0)
+ a_upper_arm = stepper_configs[0].getfloat("upper_arm_length", above=0.0)
upper_arms = [
- sconfig.getfloat('upper_arm_length', a_upper_arm, above=0.)
- for sconfig in stepper_configs]
- a_lower_arm = stepper_configs[0].getfloat('lower_arm_length', above=0.)
+ sconfig.getfloat("upper_arm_length", a_upper_arm, above=0.0)
+ for sconfig in stepper_configs
+ ]
+ a_lower_arm = stepper_configs[0].getfloat("lower_arm_length", above=0.0)
lower_arms = [
- sconfig.getfloat('lower_arm_length', a_lower_arm, above=0.)
- for sconfig in stepper_configs]
- angles = [sconfig.getfloat('angle', angle)
- for sconfig, angle in zip(stepper_configs, [30., 150., 270.])]
+ sconfig.getfloat("lower_arm_length", a_lower_arm, above=0.0)
+ for sconfig in stepper_configs
+ ]
+ angles = [
+ sconfig.getfloat("angle", angle)
+ for sconfig, angle in zip(stepper_configs, [30.0, 150.0, 270.0])
+ ]
# Setup rotary delta calibration helper
- endstops = [rail.get_homing_info().position_endstop
- for rail in self.rails]
- stepdists = [rail.get_steppers()[0].get_step_dist()
- for rail in self.rails]
+ endstops = [rail.get_homing_info().position_endstop for rail in self.rails]
+ stepdists = [rail.get_steppers()[0].get_step_dist() for rail in self.rails]
self.calibration = RotaryDeltaCalibration(
- shoulder_radius, shoulder_height, angles, upper_arms, lower_arms,
- endstops, stepdists)
+ shoulder_radius,
+ shoulder_height,
+ angles,
+ upper_arms,
+ lower_arms,
+ endstops,
+ stepdists,
+ )
# Setup iterative solver
for r, a, ua, la in zip(self.rails, angles, upper_arms, lower_arms):
- r.setup_itersolve('rotary_delta_stepper_alloc',
- shoulder_radius, shoulder_height,
- math.radians(a), ua, la)
+ r.setup_itersolve(
+ "rotary_delta_stepper_alloc",
+ shoulder_radius,
+ shoulder_height,
+ math.radians(a),
+ ua,
+ la,
+ )
for s in self.get_steppers():
s.set_trapq(toolhead.get_trapq())
toolhead.register_step_generator(s.generate_steps)
# Setup boundary checks
self.need_home = True
- self.limit_xy2 = -1.
- eangles = [r.calc_position_from_coord([0., 0., ep])
- for r, ep in zip(self.rails, endstops)]
- self.home_position = tuple(
- self.calibration.actuator_to_cartesian(eangles))
+ self.limit_xy2 = -1.0
+ eangles = [
+ r.calc_position_from_coord([0.0, 0.0, ep])
+ for r, ep in zip(self.rails, endstops)
+ ]
+ self.home_position = tuple(self.calibration.actuator_to_cartesian(eangles))
self.max_z = min(endstops)
- self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
+ self.min_z = config.getfloat("minimum_z_position", 0, maxval=self.max_z)
min_ua = min([shoulder_radius + ua for ua in upper_arms])
min_la = min([la - shoulder_radius for la in lower_arms])
- self.max_xy2 = min(min_ua, min_la)**2
- arm_z = [self.calibration.elbow_coord(i, ea)[2]
- for i, ea in enumerate(eangles)]
+ self.max_xy2 = min(min_ua, min_la) ** 2
+ arm_z = [self.calibration.elbow_coord(i, ea)[2] for i, ea in enumerate(eangles)]
self.limit_z = min([az - la for az, la in zip(arm_z, lower_arms)])
logging.info(
"Delta max build height %.2fmm (radius tapered above %.2fmm)"
- % (self.max_z, self.limit_z))
+ % (self.max_z, self.limit_z)
+ )
max_xy = math.sqrt(self.max_xy2)
- self.axes_min = toolhead.Coord(-max_xy, -max_xy, self.min_z, 0.)
- self.axes_max = toolhead.Coord(max_xy, max_xy, self.max_z, 0.)
- self.set_position([0., 0., 0.], "")
+ self.axes_min = toolhead.Coord(-max_xy, -max_xy, self.min_z, 0.0)
+ self.axes_max = toolhead.Coord(max_xy, max_xy, self.max_z, 0.0)
+ self.set_position([0.0, 0.0, 0.0], "")
+
def get_steppers(self):
return [s for rail in self.rails for s in rail.get_steppers()]
+
def calc_position(self, stepper_positions):
spos = [stepper_positions[rail.get_name()] for rail in self.rails]
return self.calibration.actuator_to_cartesian(spos)
+
def set_position(self, newpos, homing_axes):
for rail in self.rails:
rail.set_position(newpos)
- self.limit_xy2 = -1.
+ self.limit_xy2 = -1.0
if homing_axes == "xyz":
self.need_home = False
+
def clear_homing_state(self, clear_axes):
# Clearing homing state for each axis individually is not implemented
if clear_axes:
self.limit_xy2 = -1
self.need_home = True
+
def home(self, homing_state):
# All axes are homed simultaneously
homing_state.set_axes([0, 1, 2])
forcepos = list(self.home_position)
- #min_angles = [-.5 * math.pi] * 3
- #forcepos[2] = self.calibration.actuator_to_cartesian(min_angles)[2]
- forcepos[2] = -1.
+ # min_angles = [-.5 * math.pi] * 3
+ # forcepos[2] = self.calibration.actuator_to_cartesian(min_angles)[2]
+ forcepos[2] = -1.0
homing_state.home_rails(self.rails, forcepos, self.home_position)
+
def check_move(self, move):
end_pos = move.end_pos
- end_xy2 = end_pos[0]**2 + end_pos[1]**2
+ end_xy2 = end_pos[0] ** 2 + end_pos[1] ** 2
if end_xy2 <= self.limit_xy2 and not move.axes_d[2]:
# Normal XY move
return
@@ -110,30 +138,44 @@ class RotaryDeltaKinematics:
end_z = end_pos[2]
limit_xy2 = self.max_xy2
if end_z > self.limit_z:
- limit_xy2 = min(limit_xy2, (self.max_z - end_z)**2)
+ limit_xy2 = min(limit_xy2, (self.max_z - end_z) ** 2)
if end_xy2 > limit_xy2 or end_z > self.max_z or end_z < self.min_z:
# Move out of range - verify not a homing move
- if (end_pos[:2] != self.home_position[:2]
- or end_z < self.min_z or end_z > self.home_position[2]):
+ if (
+ end_pos[:2] != self.home_position[:2]
+ or end_z < self.min_z
+ or end_z > self.home_position[2]
+ ):
raise move.move_error()
- limit_xy2 = -1.
+ limit_xy2 = -1.0
if move.axes_d[2]:
move.limit_speed(self.max_z_velocity, move.accel)
- limit_xy2 = -1.
+ limit_xy2 = -1.0
self.limit_xy2 = limit_xy2
+
def get_status(self, eventtime):
return {
- 'homed_axes': '' if self.need_home else 'xyz',
- 'axis_minimum': self.axes_min,
- 'axis_maximum': self.axes_max,
+ "homed_axes": "" if self.need_home else "xyz",
+ "axis_minimum": self.axes_min,
+ "axis_maximum": self.axes_max,
}
+
def get_calibration(self):
return self.calibration
+
# Rotary delta parameter calibration for DELTA_CALIBRATE tool
class RotaryDeltaCalibration:
- def __init__(self, shoulder_radius, shoulder_height, angles,
- upper_arms, lower_arms, endstops, stepdists):
+ def __init__(
+ self,
+ shoulder_radius,
+ shoulder_height,
+ angles,
+ upper_arms,
+ lower_arms,
+ endstops,
+ stepdists,
+ ):
self.shoulder_radius = shoulder_radius
self.shoulder_height = shoulder_height
self.angles = angles
@@ -143,39 +185,56 @@ class RotaryDeltaCalibration:
self.stepdists = stepdists
# Calculate the absolute angle of each endstop
ffi_main, self.ffi_lib = chelper.get_ffi()
- self.sks = [ffi_main.gc(self.ffi_lib.rotary_delta_stepper_alloc(
- shoulder_radius, shoulder_height, math.radians(a), ua, la),
- self.ffi_lib.free)
- for a, ua, la in zip(angles, upper_arms, lower_arms)]
+ self.sks = [
+ ffi_main.gc(
+ self.ffi_lib.rotary_delta_stepper_alloc(
+ shoulder_radius, shoulder_height, math.radians(a), ua, la
+ ),
+ self.ffi_lib.free,
+ )
+ for a, ua, la in zip(angles, upper_arms, lower_arms)
+ ]
self.abs_endstops = [
- self.ffi_lib.itersolve_calc_position_from_coord(sk, 0., 0., es)
- for sk, es in zip(self.sks, endstops)]
+ self.ffi_lib.itersolve_calc_position_from_coord(sk, 0.0, 0.0, es)
+ for sk, es in zip(self.sks, endstops)
+ ]
+
def coordinate_descent_params(self, is_extended):
# Determine adjustment parameters (for use with coordinate_descent)
- adj_params = ('shoulder_height', 'endstop_a', 'endstop_b', 'endstop_c')
+ adj_params = ("shoulder_height", "endstop_a", "endstop_b", "endstop_c")
if is_extended:
- adj_params += ('shoulder_radius', 'angle_a', 'angle_b')
- params = { 'shoulder_radius': self.shoulder_radius,
- 'shoulder_height': self.shoulder_height }
- for i, axis in enumerate('abc'):
- params['angle_'+axis] = self.angles[i]
- params['upper_arm_'+axis] = self.upper_arms[i]
- params['lower_arm_'+axis] = self.lower_arms[i]
- params['endstop_'+axis] = self.endstops[i]
- params['stepdist_'+axis] = self.stepdists[i]
+ adj_params += ("shoulder_radius", "angle_a", "angle_b")
+ params = {
+ "shoulder_radius": self.shoulder_radius,
+ "shoulder_height": self.shoulder_height,
+ }
+ for i, axis in enumerate("abc"):
+ params["angle_" + axis] = self.angles[i]
+ params["upper_arm_" + axis] = self.upper_arms[i]
+ params["lower_arm_" + axis] = self.lower_arms[i]
+ params["endstop_" + axis] = self.endstops[i]
+ params["stepdist_" + axis] = self.stepdists[i]
return adj_params, params
+
def new_calibration(self, params):
# Create a new calibration object from coordinate_descent params
- shoulder_radius = params['shoulder_radius']
- shoulder_height = params['shoulder_height']
- angles = [params['angle_'+a] for a in 'abc']
- upper_arms = [params['upper_arm_'+a] for a in 'abc']
- lower_arms = [params['lower_arm_'+a] for a in 'abc']
- endstops = [params['endstop_'+a] for a in 'abc']
- stepdists = [params['stepdist_'+a] for a in 'abc']
+ shoulder_radius = params["shoulder_radius"]
+ shoulder_height = params["shoulder_height"]
+ angles = [params["angle_" + a] for a in "abc"]
+ upper_arms = [params["upper_arm_" + a] for a in "abc"]
+ lower_arms = [params["lower_arm_" + a] for a in "abc"]
+ endstops = [params["endstop_" + a] for a in "abc"]
+ stepdists = [params["stepdist_" + a] for a in "abc"]
return RotaryDeltaCalibration(
- shoulder_radius, shoulder_height, angles, upper_arms, lower_arms,
- endstops, stepdists)
+ shoulder_radius,
+ shoulder_height,
+ angles,
+ upper_arms,
+ lower_arms,
+ endstops,
+ stepdists,
+ )
+
def elbow_coord(self, elbow_id, spos):
# Calculate elbow position in coordinate system at shoulder joint
sj_elbow_x = self.upper_arms[elbow_id] * math.cos(spos)
@@ -186,43 +245,59 @@ class RotaryDeltaCalibration:
y = (sj_elbow_x + self.shoulder_radius) * math.sin(angle)
z = sj_elbow_y + self.shoulder_height
return (x, y, z)
+
def actuator_to_cartesian(self, spos):
sphere_coords = [self.elbow_coord(i, sp) for i, sp in enumerate(spos)]
lower_arm2 = [la**2 for la in self.lower_arms]
return mathutil.trilateration(sphere_coords, lower_arm2)
+
def get_position_from_stable(self, stable_position):
# Return cartesian coordinates for the given stable_position
- spos = [ea - sp * sd
- for ea, sp, sd in zip(self.abs_endstops, stable_position,
- self.stepdists)]
+ spos = [
+ ea - sp * sd
+ for ea, sp, sd in zip(self.abs_endstops, stable_position, self.stepdists)
+ ]
return self.actuator_to_cartesian(spos)
+
def calc_stable_position(self, coord):
# Return a stable_position from a cartesian coordinate
- pos = [ self.ffi_lib.itersolve_calc_position_from_coord(
- sk, coord[0], coord[1], coord[2])
- for sk in self.sks ]
- return [(ep - sp) / sd
- for sd, ep, sp in zip(self.stepdists, self.abs_endstops, pos)]
+ pos = [
+ self.ffi_lib.itersolve_calc_position_from_coord(
+ sk, coord[0], coord[1], coord[2]
+ )
+ for sk in self.sks
+ ]
+ return [
+ (ep - sp) / sd for sd, ep, sp in zip(self.stepdists, self.abs_endstops, pos)
+ ]
+
def save_state(self, configfile):
# Save the current parameters (for use with SAVE_CONFIG)
- configfile.set('printer', 'shoulder_radius', "%.6f"
- % (self.shoulder_radius,))
- configfile.set('printer', 'shoulder_height', "%.6f"
- % (self.shoulder_height,))
- for i, axis in enumerate('abc'):
- configfile.set('stepper_'+axis, 'angle', "%.6f" % (self.angles[i],))
- configfile.set('stepper_'+axis, 'position_endstop',
- "%.6f" % (self.endstops[i],))
+ configfile.set("printer", "shoulder_radius", "%.6f" % (self.shoulder_radius,))
+ configfile.set("printer", "shoulder_height", "%.6f" % (self.shoulder_height,))
+ for i, axis in enumerate("abc"):
+ configfile.set("stepper_" + axis, "angle", "%.6f" % (self.angles[i],))
+ configfile.set(
+ "stepper_" + axis, "position_endstop", "%.6f" % (self.endstops[i],)
+ )
gcode = configfile.get_printer().lookup_object("gcode")
gcode.respond_info(
"stepper_a: position_endstop: %.6f angle: %.6f\n"
"stepper_b: position_endstop: %.6f angle: %.6f\n"
"stepper_c: position_endstop: %.6f angle: %.6f\n"
"shoulder_radius: %.6f shoulder_height: %.6f"
- % (self.endstops[0], self.angles[0],
- self.endstops[1], self.angles[1],
- self.endstops[2], self.angles[2],
- self.shoulder_radius, self.shoulder_height))
+ % (
+ self.endstops[0],
+ self.angles[0],
+ self.endstops[1],
+ self.angles[1],
+ self.endstops[2],
+ self.angles[2],
+ self.shoulder_radius,
+ self.shoulder_height,
+ )
+ )
+
def load_kinematics(toolhead, config):
return RotaryDeltaKinematics(toolhead, config)