aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/kinematics/delta.py
blob: e925cc01e03d04d5b02df3ef2aecfd27190efb4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Code for handling the kinematics of linear delta robots
#
# Copyright (C) 2016-2018  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, homing, mathutil

# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO
SLOW_RATIO = 3.

class DeltaKinematics:
    def __init__(self, toolhead, config):
        # Setup tower rails
        stepper_configs = [config.getsection('stepper_' + a) for a in 'abc']
        rail_a = stepper.PrinterRail(
            stepper_configs[0], need_position_minmax = False)
        a_endstop = rail_a.get_homing_info().position_endstop
        rail_b = stepper.PrinterRail(
            stepper_configs[1], need_position_minmax = False,
            default_position_endstop=a_endstop)
        rail_c = stepper.PrinterRail(
            stepper_configs[2], need_position_minmax = False,
            default_position_endstop=a_endstop)
        self.rails = [rail_a, rail_b, rail_c]
        # Setup stepper max halt velocity
        self.max_velocity, self.max_accel = toolhead.get_max_velocity()
        self.max_z_velocity = config.getfloat(
            'max_z_velocity', self.max_velocity,
            above=0., maxval=self.max_velocity)
        max_halt_velocity = toolhead.get_max_axis_halt() * SLOW_RATIO
        max_halt_accel = self.max_accel * SLOW_RATIO
        for rail in self.rails:
            rail.set_max_jerk(max_halt_velocity, max_halt_accel)
        # Read radius and arm lengths
        self.radius = radius = config.getfloat('delta_radius', above=0.)
        arm_length_a = stepper_configs[0].getfloat('arm_length', above=radius)
        self.arm_lengths = arm_lengths = [
            sconfig.getfloat('arm_length', arm_length_a, above=radius)
            for sconfig in stepper_configs]
        self.arm2 = [arm**2 for arm in arm_lengths]
        self.abs_endstops = [(rail.get_homing_info().position_endstop
                              + math.sqrt(arm2 - radius**2))
                             for rail, arm2 in zip(self.rails, self.arm2)]
        # Determine tower locations in cartesian space
        self.angles = [sconfig.getfloat('angle', angle)
                       for sconfig, angle in zip(stepper_configs,
                                                 [210., 330., 90.])]
        self.towers = [(math.cos(math.radians(angle)) * radius,
                        math.sin(math.radians(angle)) * radius)
                       for angle in self.angles]
        for r, a, t in zip(self.rails, self.arm2, self.towers):
            r.setup_itersolve('delta_stepper_alloc', a, t[0], t[1])
        # Setup boundary checks
        self.need_motor_enable = self.need_home = True
        self.limit_xy2 = -1.
        self.home_position = tuple(
            self._actuator_to_cartesian(self.abs_endstops))
        self.max_z = min([rail.get_homing_info().position_endstop
                          for rail in self.rails])
        self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
        self.limit_z = min([ep - arm
                            for ep, arm in zip(self.abs_endstops, arm_lengths)])
        logging.info(
            "Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
                self.max_z, self.limit_z))
        # Find the point where an XY move could result in excessive
        # tower movement
        half_min_step_dist = min([r.get_steppers()[0].get_step_dist()
                                  for r in self.rails]) * .5
        min_arm_length = min(arm_lengths)
        def ratio_to_dist(ratio):
            return (ratio * math.sqrt(min_arm_length**2 / (ratio**2 + 1.)
                                      - half_min_step_dist**2)
                    + half_min_step_dist)
        self.slow_xy2 = (ratio_to_dist(SLOW_RATIO) - radius)**2
        self.very_slow_xy2 = (ratio_to_dist(2. * SLOW_RATIO) - radius)**2
        self.max_xy2 = min(radius, min_arm_length - radius,
                           ratio_to_dist(4. * SLOW_RATIO) - radius)**2
        logging.info("Delta max build radius %.2fmm (moves slowed past %.2fmm"
                     " and %.2fmm)" % (
                         math.sqrt(self.max_xy2), math.sqrt(self.slow_xy2),
                         math.sqrt(self.very_slow_xy2)))
        self.set_position([0., 0., 0.], ())
    def get_steppers(self, flags=""):
        return [s for rail in self.rails for s in rail.get_steppers()]
    def _actuator_to_cartesian(self, spos):
        sphere_coords = [(t[0], t[1], sp) for t, sp in zip(self.towers, spos)]
        return mathutil.trilateration(sphere_coords, self.arm2)
    def calc_position(self):
        spos = [rail.get_commanded_position() for rail in self.rails]
        return self._actuator_to_cartesian(spos)
    def set_position(self, newpos, homing_axes):
        for rail in self.rails:
            rail.set_position(newpos)
        self.limit_xy2 = -1.
        if tuple(homing_axes) == (0, 1, 2):
            self.need_home = False
    def home(self, homing_state):
        # All axes are homed simultaneously
        homing_state.set_axes([0, 1, 2])
        forcepos = list(self.home_position)
        forcepos[2] = -1.5 * math.sqrt(max(self.arm2)-self.max_xy2)
        homing_state.home_rails(self.rails, forcepos, self.home_position,
                                limit_speed=self.max_z_velocity)
    def motor_off(self, print_time):
        self.limit_xy2 = -1.
        for rail in self.rails:
            rail.motor_enable(print_time, 0)
        self.need_motor_enable = self.need_home = True
    def _check_motor_enable(self, print_time):
        for rail in self.rails:
            rail.motor_enable(print_time, 1)
        self.need_motor_enable = False
    def check_move(self, move):
        end_pos = move.end_pos
        end_xy2 = end_pos[0]**2 + end_pos[1]**2
        if end_xy2 <= self.limit_xy2 and not move.axes_d[2]:
            # Normal XY move
            return
        if self.need_home:
            raise homing.EndstopMoveError(end_pos, "Must home first")
        end_z = end_pos[2]
        limit_xy2 = self.max_xy2
        if end_z > self.limit_z:
            limit_xy2 = min(limit_xy2, (self.max_z - end_z)**2)
        if end_xy2 > limit_xy2 or end_z > self.max_z or end_z < self.min_z:
            # Move out of range - verify not a homing move
            if (end_pos[:2] != self.home_position[:2]
                or end_z < self.min_z or end_z > self.home_position[2]):
                raise homing.EndstopMoveError(end_pos)
            limit_xy2 = -1.
        if move.axes_d[2]:
            move.limit_speed(self.max_z_velocity, move.accel)
            limit_xy2 = -1.
        # Limit the speed/accel of this move if is is at the extreme
        # end of the build envelope
        extreme_xy2 = max(end_xy2, move.start_pos[0]**2 + move.start_pos[1]**2)
        if extreme_xy2 > self.slow_xy2:
            r = 0.5
            if extreme_xy2 > self.very_slow_xy2:
                r = 0.25
            max_velocity = self.max_velocity
            if move.axes_d[2]:
                max_velocity = self.max_z_velocity
            move.limit_speed(max_velocity * r, self.max_accel * r)
            limit_xy2 = -1.
        self.limit_xy2 = min(limit_xy2, self.slow_xy2)
    def move(self, print_time, move):
        if self.need_motor_enable:
            self._check_motor_enable(print_time)
        for rail in self.rails:
            rail.step_itersolve(move.cmove)
    # Helper function for DELTA_CALIBRATE script
    def get_calibrate_params(self):
        out = { 'radius': self.radius }
        for i, axis in enumerate('abc'):
            rail = self.rails[i]
            out['angle_'+axis] = self.angles[i]
            out['arm_'+axis] = self.arm_lengths[i]
            out['endstop_'+axis] = rail.get_homing_info().position_endstop
            out['stepdist_'+axis] = rail.get_steppers()[0].get_step_dist()
        return out

def load_kinematics(toolhead, config):
    return DeltaKinematics(toolhead, config)