aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/cartesian.py
blob: a295ee92b3ad4c7467cf6705857fec2385127bbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Code for handling the kinematics of cartesian robots
#
# Copyright (C) 2016  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import stepper, homing

StepList = (0, 1, 2)

class CartKinematics:
    def __init__(self, toolhead, printer, config):
        self.steppers = [stepper.LookupMultiHomingStepper(
            printer, config.getsection('stepper_' + n))
                         for n in ['x', 'y', 'z']]
        max_velocity, max_accel = toolhead.get_max_velocity()
        self.max_z_velocity = config.getfloat(
            'max_z_velocity', max_velocity, above=0., maxval=max_velocity)
        self.max_z_accel = config.getfloat(
            'max_z_accel', max_accel, above=0., maxval=max_accel)
        self.need_motor_enable = True
        self.limits = [(1.0, -1.0)] * 3
        # Setup stepper max halt velocity
        max_halt_velocity = toolhead.get_max_axis_halt()
        self.steppers[0].set_max_jerk(max_halt_velocity, max_accel)
        self.steppers[1].set_max_jerk(max_halt_velocity, max_accel)
        self.steppers[2].set_max_jerk(
            min(max_halt_velocity, self.max_z_velocity), max_accel)
    def set_position(self, newpos):
        for i in StepList:
            self.steppers[i].set_position(newpos[i])
    def home(self, homing_state):
        # Each axis is homed independently and in order
        for axis in homing_state.get_axes():
            s = self.steppers[axis]
            self.limits[axis] = (s.position_min, s.position_max)
            # Determine moves
            if s.homing_positive_dir:
                pos = s.position_endstop - 1.5*(
                    s.position_endstop - s.position_min)
                rpos = s.position_endstop - s.homing_retract_dist
                r2pos = rpos - s.homing_retract_dist
            else:
                pos = s.position_endstop + 1.5*(
                    s.position_max - s.position_endstop)
                rpos = s.position_endstop + s.homing_retract_dist
                r2pos = rpos + s.homing_retract_dist
            # Initial homing
            homing_speed = s.get_homing_speed()
            homepos = [None, None, None, None]
            homepos[axis] = s.position_endstop
            coord = [None, None, None, None]
            coord[axis] = pos
            homing_state.home(coord, homepos, s.get_endstops(), homing_speed)
            # Retract
            coord[axis] = rpos
            homing_state.retract(coord, homing_speed)
            # Home again
            coord[axis] = r2pos
            homing_state.home(coord, homepos, s.get_endstops(),
                              homing_speed/2.0, second_home=True)
            # Set final homed position
            coord[axis] = s.position_endstop + s.get_homed_offset()
            homing_state.set_homed_position(coord)
    def query_endstops(self, print_time, query_flags):
        return homing.query_endstops(print_time, query_flags, self.steppers)
    def motor_off(self, print_time):
        self.limits = [(1.0, -1.0)] * 3
        for stepper in self.steppers:
            stepper.motor_enable(print_time, 0)
        self.need_motor_enable = True
    def _check_motor_enable(self, print_time, move):
        need_motor_enable = False
        for i in StepList:
            if move.axes_d[i]:
                self.steppers[i].motor_enable(print_time, 1)
            need_motor_enable |= self.steppers[i].need_motor_enable
        self.need_motor_enable = need_motor_enable
    def _check_endstops(self, move):
        end_pos = move.end_pos
        for i in StepList:
            if (move.axes_d[i]
                and (end_pos[i] < self.limits[i][0]
                     or end_pos[i] > self.limits[i][1])):
                if self.limits[i][0] > self.limits[i][1]:
                    raise homing.EndstopMoveError(
                        end_pos, "Must home axis first")
                raise homing.EndstopMoveError(end_pos)
    def check_move(self, move):
        limits = self.limits
        xpos, ypos = move.end_pos[:2]
        if (xpos < limits[0][0] or xpos > limits[0][1]
            or ypos < limits[1][0] or ypos > limits[1][1]):
            self._check_endstops(move)
        if not move.axes_d[2]:
            # Normal XY move - use defaults
            return
        # Move with Z - update velocity and accel for slower Z axis
        self._check_endstops(move)
        z_ratio = move.move_d / abs(move.axes_d[2])
        move.limit_speed(
            self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
    def move(self, print_time, move):
        if self.need_motor_enable:
            self._check_motor_enable(print_time, move)
        for i in StepList:
            axis_d = move.axes_d[i]
            if not axis_d:
                continue
            step_const = self.steppers[i].step_const
            move_time = print_time
            start_pos = move.start_pos[i]
            axis_r = abs(axis_d) / move.move_d
            accel = move.accel * axis_r
            cruise_v = move.cruise_v * axis_r

            # Acceleration steps
            if move.accel_r:
                accel_d = move.accel_r * axis_d
                step_const(move_time, start_pos, accel_d,
                           move.start_v * axis_r, accel)
                start_pos += accel_d
                move_time += move.accel_t
            # Cruising steps
            if move.cruise_r:
                cruise_d = move.cruise_r * axis_d
                step_const(move_time, start_pos, cruise_d, cruise_v, 0.)
                start_pos += cruise_d
                move_time += move.cruise_t
            # Deceleration steps
            if move.decel_r:
                decel_d = move.decel_r * axis_d
                step_const(move_time, start_pos, decel_d, cruise_v, -accel)