diff options
Diffstat (limited to 'klippy/kinematics/delta.py')
-rw-r--r-- | klippy/kinematics/delta.py | 283 |
1 files changed, 173 insertions, 110 deletions
diff --git a/klippy/kinematics/delta.py b/klippy/kinematics/delta.py index aa244a8f..508a3331 100644 --- a/klippy/kinematics/delta.py +++ b/klippy/kinematics/delta.py @@ -7,116 +7,148 @@ import math, logging import stepper, mathutil # Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO -SLOW_RATIO = 3. +SLOW_RATIO = 3.0 + class DeltaKinematics: def __init__(self, toolhead, config): # Setup tower rails - stepper_configs = [config.getsection('stepper_' + a) for a in 'abc'] - rail_a = stepper.LookupMultiRail( - stepper_configs[0], need_position_minmax = False) + stepper_configs = [config.getsection("stepper_" + a) for a in "abc"] + rail_a = stepper.LookupMultiRail(stepper_configs[0], need_position_minmax=False) a_endstop = rail_a.get_homing_info().position_endstop rail_b = stepper.LookupMultiRail( - stepper_configs[1], need_position_minmax = False, - default_position_endstop=a_endstop) + stepper_configs[1], + need_position_minmax=False, + default_position_endstop=a_endstop, + ) rail_c = stepper.LookupMultiRail( - stepper_configs[2], need_position_minmax = False, - default_position_endstop=a_endstop) + stepper_configs[2], + need_position_minmax=False, + default_position_endstop=a_endstop, + ) self.rails = [rail_a, rail_b, rail_c] # Setup max velocity self.max_velocity, self.max_accel = toolhead.get_max_velocity() self.max_z_velocity = config.getfloat( - 'max_z_velocity', self.max_velocity, - above=0., maxval=self.max_velocity) - self.max_z_accel = config.getfloat('max_z_accel', self.max_accel, - above=0., maxval=self.max_accel) + "max_z_velocity", self.max_velocity, above=0.0, maxval=self.max_velocity + ) + self.max_z_accel = config.getfloat( + "max_z_accel", self.max_accel, above=0.0, maxval=self.max_accel + ) # Read radius and arm lengths - self.radius = radius = config.getfloat('delta_radius', above=0.) - print_radius = config.getfloat('print_radius', radius, above=0.) - arm_length_a = stepper_configs[0].getfloat('arm_length', above=radius) + self.radius = radius = config.getfloat("delta_radius", above=0.0) + print_radius = config.getfloat("print_radius", radius, above=0.0) + arm_length_a = stepper_configs[0].getfloat("arm_length", above=radius) self.arm_lengths = arm_lengths = [ - sconfig.getfloat('arm_length', arm_length_a, above=radius) - for sconfig in stepper_configs] + sconfig.getfloat("arm_length", arm_length_a, above=radius) + for sconfig in stepper_configs + ] self.arm2 = [arm**2 for arm in arm_lengths] - self.abs_endstops = [(rail.get_homing_info().position_endstop - + math.sqrt(arm2 - radius**2)) - for rail, arm2 in zip(self.rails, self.arm2)] + self.abs_endstops = [ + (rail.get_homing_info().position_endstop + math.sqrt(arm2 - radius**2)) + for rail, arm2 in zip(self.rails, self.arm2) + ] # Determine tower locations in cartesian space - self.angles = [sconfig.getfloat('angle', angle) - for sconfig, angle in zip(stepper_configs, - [210., 330., 90.])] - self.towers = [(math.cos(math.radians(angle)) * radius, - math.sin(math.radians(angle)) * radius) - for angle in self.angles] + self.angles = [ + sconfig.getfloat("angle", angle) + for sconfig, angle in zip(stepper_configs, [210.0, 330.0, 90.0]) + ] + self.towers = [ + ( + math.cos(math.radians(angle)) * radius, + math.sin(math.radians(angle)) * radius, + ) + for angle in self.angles + ] for r, a, t in zip(self.rails, self.arm2, self.towers): - r.setup_itersolve('delta_stepper_alloc', a, t[0], t[1]) + r.setup_itersolve("delta_stepper_alloc", a, t[0], t[1]) for s in self.get_steppers(): s.set_trapq(toolhead.get_trapq()) toolhead.register_step_generator(s.generate_steps) # Setup boundary checks self.need_home = True - self.limit_xy2 = -1. - self.home_position = tuple( - self._actuator_to_cartesian(self.abs_endstops)) - self.max_z = min([rail.get_homing_info().position_endstop - for rail in self.rails]) - self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z) - self.limit_z = min([ep - arm - for ep, arm in zip(self.abs_endstops, arm_lengths)]) + self.limit_xy2 = -1.0 + self.home_position = tuple(self._actuator_to_cartesian(self.abs_endstops)) + self.max_z = min( + [rail.get_homing_info().position_endstop for rail in self.rails] + ) + self.min_z = config.getfloat("minimum_z_position", 0, maxval=self.max_z) + self.limit_z = min( + [ep - arm for ep, arm in zip(self.abs_endstops, arm_lengths)] + ) self.min_arm_length = min_arm_length = min(arm_lengths) self.min_arm2 = min_arm_length**2 logging.info( "Delta max build height %.2fmm (radius tapered above %.2fmm)" - % (self.max_z, self.limit_z)) + % (self.max_z, self.limit_z) + ) # Find the point where an XY move could result in excessive # tower movement - half_min_step_dist = min([r.get_steppers()[0].get_step_dist() - for r in self.rails]) * .5 + half_min_step_dist = ( + min([r.get_steppers()[0].get_step_dist() for r in self.rails]) * 0.5 + ) min_arm_length = min(arm_lengths) + def ratio_to_xy(ratio): - return (ratio * math.sqrt(min_arm_length**2 / (ratio**2 + 1.) - - half_min_step_dist**2) - + half_min_step_dist - radius) - self.slow_xy2 = ratio_to_xy(SLOW_RATIO)**2 - self.very_slow_xy2 = ratio_to_xy(2. * SLOW_RATIO)**2 - self.max_xy2 = min(print_radius, min_arm_length - radius, - ratio_to_xy(4. * SLOW_RATIO))**2 + return ( + ratio + * math.sqrt( + min_arm_length**2 / (ratio**2 + 1.0) - half_min_step_dist**2 + ) + + half_min_step_dist + - radius + ) + + self.slow_xy2 = ratio_to_xy(SLOW_RATIO) ** 2 + self.very_slow_xy2 = ratio_to_xy(2.0 * SLOW_RATIO) ** 2 + self.max_xy2 = ( + min(print_radius, min_arm_length - radius, ratio_to_xy(4.0 * SLOW_RATIO)) + ** 2 + ) max_xy = math.sqrt(self.max_xy2) - logging.info("Delta max build radius %.2fmm (moves slowed past %.2fmm" - " and %.2fmm)" - % (max_xy, math.sqrt(self.slow_xy2), - math.sqrt(self.very_slow_xy2))) - self.axes_min = toolhead.Coord(-max_xy, -max_xy, self.min_z, 0.) - self.axes_max = toolhead.Coord(max_xy, max_xy, self.max_z, 0.) - self.set_position([0., 0., 0.], "") + logging.info( + "Delta max build radius %.2fmm (moves slowed past %.2fmm" + " and %.2fmm)" + % (max_xy, math.sqrt(self.slow_xy2), math.sqrt(self.very_slow_xy2)) + ) + self.axes_min = toolhead.Coord(-max_xy, -max_xy, self.min_z, 0.0) + self.axes_max = toolhead.Coord(max_xy, max_xy, self.max_z, 0.0) + self.set_position([0.0, 0.0, 0.0], "") + def get_steppers(self): return [s for rail in self.rails for s in rail.get_steppers()] + def _actuator_to_cartesian(self, spos): sphere_coords = [(t[0], t[1], sp) for t, sp in zip(self.towers, spos)] return mathutil.trilateration(sphere_coords, self.arm2) + def calc_position(self, stepper_positions): spos = [stepper_positions[rail.get_name()] for rail in self.rails] return self._actuator_to_cartesian(spos) + def set_position(self, newpos, homing_axes): for rail in self.rails: rail.set_position(newpos) - self.limit_xy2 = -1. + self.limit_xy2 = -1.0 if homing_axes == "xyz": self.need_home = False + def clear_homing_state(self, clear_axes): # Clearing homing state for each axis individually is not implemented if clear_axes: self.limit_xy2 = -1 self.need_home = True + def home(self, homing_state): # All axes are homed simultaneously homing_state.set_axes([0, 1, 2]) forcepos = list(self.home_position) - forcepos[2] = -1.5 * math.sqrt(max(self.arm2)-self.max_xy2) + forcepos[2] = -1.5 * math.sqrt(max(self.arm2) - self.max_xy2) homing_state.home_rails(self.rails, forcepos, self.home_position) + def check_move(self, move): end_pos = move.end_pos - end_xy2 = end_pos[0]**2 + end_pos[1]**2 + end_xy2 = end_pos[0] ** 2 + end_pos[1] ** 2 if end_xy2 <= self.limit_xy2 and not move.axes_d[2]: # Normal XY move return @@ -127,44 +159,48 @@ class DeltaKinematics: if end_z > self.limit_z: above_z_limit = end_z - self.limit_z allowed_radius = self.radius - math.sqrt( - self.min_arm2 - (self.min_arm_length - above_z_limit)**2 + self.min_arm2 - (self.min_arm_length - above_z_limit) ** 2 ) limit_xy2 = min(limit_xy2, allowed_radius**2) if end_xy2 > limit_xy2 or end_z > self.max_z or end_z < self.min_z: # Move out of range - verify not a homing move - if (end_pos[:2] != self.home_position[:2] - or end_z < self.min_z or end_z > self.home_position[2]): + if ( + end_pos[:2] != self.home_position[:2] + or end_z < self.min_z + or end_z > self.home_position[2] + ): raise move.move_error() - limit_xy2 = -1. + limit_xy2 = -1.0 if move.axes_d[2]: z_ratio = move.move_d / abs(move.axes_d[2]) - move.limit_speed(self.max_z_velocity * z_ratio, - self.max_z_accel * z_ratio) - limit_xy2 = -1. + move.limit_speed(self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio) + limit_xy2 = -1.0 # Limit the speed/accel of this move if is is at the extreme # end of the build envelope - extreme_xy2 = max(end_xy2, move.start_pos[0]**2 + move.start_pos[1]**2) + extreme_xy2 = max(end_xy2, move.start_pos[0] ** 2 + move.start_pos[1] ** 2) if extreme_xy2 > self.slow_xy2: r = 0.5 if extreme_xy2 > self.very_slow_xy2: r = 0.25 move.limit_speed(self.max_velocity * r, self.max_accel * r) - limit_xy2 = -1. + limit_xy2 = -1.0 self.limit_xy2 = min(limit_xy2, self.slow_xy2) + def get_status(self, eventtime): return { - 'homed_axes': '' if self.need_home else 'xyz', - 'axis_minimum': self.axes_min, - 'axis_maximum': self.axes_max, - 'cone_start_z': self.limit_z, + "homed_axes": "" if self.need_home else "xyz", + "axis_minimum": self.axes_min, + "axis_maximum": self.axes_max, + "cone_start_z": self.limit_z, } + def get_calibration(self): - endstops = [rail.get_homing_info().position_endstop - for rail in self.rails] - stepdists = [rail.get_steppers()[0].get_step_dist() - for rail in self.rails] - return DeltaCalibration(self.radius, self.angles, self.arm_lengths, - endstops, stepdists) + endstops = [rail.get_homing_info().position_endstop for rail in self.rails] + stepdists = [rail.get_steppers()[0].get_step_dist() for rail in self.rails] + return DeltaCalibration( + self.radius, self.angles, self.arm_lengths, endstops, stepdists + ) + # Delta parameter calibration for DELTA_CALIBRATE tool class DeltaCalibration: @@ -176,67 +212,94 @@ class DeltaCalibration: self.stepdists = stepdists # Calculate the XY cartesian coordinates of the delta towers radian_angles = [math.radians(a) for a in angles] - self.towers = [(math.cos(a) * radius, math.sin(a) * radius) - for a in radian_angles] + self.towers = [ + (math.cos(a) * radius, math.sin(a) * radius) for a in radian_angles + ] # Calculate the absolute Z height of each tower endstop radius2 = radius**2 - self.abs_endstops = [e + math.sqrt(a**2 - radius2) - for e, a in zip(endstops, arms)] + self.abs_endstops = [ + e + math.sqrt(a**2 - radius2) for e, a in zip(endstops, arms) + ] + def coordinate_descent_params(self, is_extended): # Determine adjustment parameters (for use with coordinate_descent) - adj_params = ('radius', 'angle_a', 'angle_b', - 'endstop_a', 'endstop_b', 'endstop_c') + adj_params = ( + "radius", + "angle_a", + "angle_b", + "endstop_a", + "endstop_b", + "endstop_c", + ) if is_extended: - adj_params += ('arm_a', 'arm_b', 'arm_c') - params = { 'radius': self.radius } - for i, axis in enumerate('abc'): - params['angle_'+axis] = self.angles[i] - params['arm_'+axis] = self.arms[i] - params['endstop_'+axis] = self.endstops[i] - params['stepdist_'+axis] = self.stepdists[i] + adj_params += ("arm_a", "arm_b", "arm_c") + params = {"radius": self.radius} + for i, axis in enumerate("abc"): + params["angle_" + axis] = self.angles[i] + params["arm_" + axis] = self.arms[i] + params["endstop_" + axis] = self.endstops[i] + params["stepdist_" + axis] = self.stepdists[i] return adj_params, params + def new_calibration(self, params): # Create a new calibration object from coordinate_descent params - radius = params['radius'] - angles = [params['angle_'+a] for a in 'abc'] - arms = [params['arm_'+a] for a in 'abc'] - endstops = [params['endstop_'+a] for a in 'abc'] - stepdists = [params['stepdist_'+a] for a in 'abc'] + radius = params["radius"] + angles = [params["angle_" + a] for a in "abc"] + arms = [params["arm_" + a] for a in "abc"] + endstops = [params["endstop_" + a] for a in "abc"] + stepdists = [params["stepdist_" + a] for a in "abc"] return DeltaCalibration(radius, angles, arms, endstops, stepdists) + def get_position_from_stable(self, stable_position): # Return cartesian coordinates for the given stable_position sphere_coords = [ (t[0], t[1], es - sp * sd) - for sd, t, es, sp in zip(self.stepdists, self.towers, - self.abs_endstops, stable_position) ] + for sd, t, es, sp in zip( + self.stepdists, self.towers, self.abs_endstops, stable_position + ) + ] return mathutil.trilateration(sphere_coords, [a**2 for a in self.arms]) + def calc_stable_position(self, coord): # Return a stable_position from a cartesian coordinate steppos = [ - math.sqrt(a**2 - (t[0]-coord[0])**2 - (t[1]-coord[1])**2) + coord[2] - for t, a in zip(self.towers, self.arms) ] - return [(ep - sp) / sd - for sd, ep, sp in zip(self.stepdists, - self.abs_endstops, steppos)] + math.sqrt(a**2 - (t[0] - coord[0]) ** 2 - (t[1] - coord[1]) ** 2) + coord[2] + for t, a in zip(self.towers, self.arms) + ] + return [ + (ep - sp) / sd + for sd, ep, sp in zip(self.stepdists, self.abs_endstops, steppos) + ] + def save_state(self, configfile): # Save the current parameters (for use with SAVE_CONFIG) - configfile.set('printer', 'delta_radius', "%.6f" % (self.radius,)) - for i, axis in enumerate('abc'): - configfile.set('stepper_'+axis, 'angle', "%.6f" % (self.angles[i],)) - configfile.set('stepper_'+axis, 'arm_length', - "%.6f" % (self.arms[i],)) - configfile.set('stepper_'+axis, 'position_endstop', - "%.6f" % (self.endstops[i],)) + configfile.set("printer", "delta_radius", "%.6f" % (self.radius,)) + for i, axis in enumerate("abc"): + configfile.set("stepper_" + axis, "angle", "%.6f" % (self.angles[i],)) + configfile.set("stepper_" + axis, "arm_length", "%.6f" % (self.arms[i],)) + configfile.set( + "stepper_" + axis, "position_endstop", "%.6f" % (self.endstops[i],) + ) gcode = configfile.get_printer().lookup_object("gcode") gcode.respond_info( "stepper_a: position_endstop: %.6f angle: %.6f arm_length: %.6f\n" "stepper_b: position_endstop: %.6f angle: %.6f arm_length: %.6f\n" "stepper_c: position_endstop: %.6f angle: %.6f arm_length: %.6f\n" "delta_radius: %.6f" - % (self.endstops[0], self.angles[0], self.arms[0], - self.endstops[1], self.angles[1], self.arms[1], - self.endstops[2], self.angles[2], self.arms[2], - self.radius)) + % ( + self.endstops[0], + self.angles[0], + self.arms[0], + self.endstops[1], + self.angles[1], + self.arms[1], + self.endstops[2], + self.angles[2], + self.arms[2], + self.radius, + ) + ) + def load_kinematics(toolhead, config): return DeltaKinematics(toolhead, config) |