diff options
author | Kevin O'Connor <kevin@koconnor.net> | 2019-10-19 21:04:42 -0400 |
---|---|---|
committer | Kevin O'Connor <kevin@koconnor.net> | 2020-01-06 11:52:42 -0500 |
commit | ac863a95b6689a0975e259512b9e49add306f2b4 (patch) | |
tree | 4014f8262e103aaf572e41696b1c5be9578a442b /klippy/kinematics/rotary_delta.py | |
parent | a56484c98b4369505c62a85f3fd6b4483f453e65 (diff) | |
download | kutter-ac863a95b6689a0975e259512b9e49add306f2b4.tar.gz kutter-ac863a95b6689a0975e259512b9e49add306f2b4.tar.xz kutter-ac863a95b6689a0975e259512b9e49add306f2b4.zip |
rotary_delta: Initial support for rotary delta kinematics
Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
Diffstat (limited to 'klippy/kinematics/rotary_delta.py')
-rw-r--r-- | klippy/kinematics/rotary_delta.py | 224 |
1 files changed, 224 insertions, 0 deletions
diff --git a/klippy/kinematics/rotary_delta.py b/klippy/kinematics/rotary_delta.py new file mode 100644 index 00000000..9e928d39 --- /dev/null +++ b/klippy/kinematics/rotary_delta.py @@ -0,0 +1,224 @@ +# Code for handling the kinematics of rotary delta robots +# +# Copyright (C) 2019 Kevin O'Connor <kevin@koconnor.net> +# +# This file may be distributed under the terms of the GNU GPLv3 license. +import math, logging +import stepper, homing, mathutil, chelper + +class RotaryDeltaKinematics: + def __init__(self, toolhead, config): + # Setup tower rails + stepper_configs = [config.getsection('stepper_' + a) for a in 'abc'] + rail_a = stepper.PrinterRail( + stepper_configs[0], need_position_minmax=False, + units_in_radians=True) + a_endstop = rail_a.get_homing_info().position_endstop + rail_b = stepper.PrinterRail( + stepper_configs[1], need_position_minmax=False, + default_position_endstop=a_endstop, units_in_radians=True) + rail_c = stepper.PrinterRail( + stepper_configs[2], need_position_minmax=False, + default_position_endstop=a_endstop, units_in_radians=True) + self.rails = [rail_a, rail_b, rail_c] + config.get_printer().register_event_handler("stepper_enable:motor_off", + self._motor_off) + # Setup stepper max halt velocity + max_velocity, max_accel = toolhead.get_max_velocity() + self.max_z_velocity = config.getfloat('max_z_velocity', max_velocity, + above=0., maxval=max_velocity) + for rail in self.rails: + rail.set_max_jerk(9999999.9, 9999999.9) + # Read config + shoulder_radius = config.getfloat('shoulder_radius', above=0.) + shoulder_height = config.getfloat('shoulder_height', above=0.) + a_upper_arm = stepper_configs[0].getfloat('upper_arm_length', above=0.) + upper_arms = [ + sconfig.getfloat('upper_arm_length', a_upper_arm, above=0.) + for sconfig in stepper_configs] + a_lower_arm = stepper_configs[0].getfloat('lower_arm_length', above=0.) + lower_arms = [ + sconfig.getfloat('lower_arm_length', a_lower_arm, above=0.) + for sconfig in stepper_configs] + angles = [sconfig.getfloat('angle', angle) + for sconfig, angle in zip(stepper_configs, [30., 150., 270.])] + # Setup rotary delta calibration helper + endstops = [rail.get_homing_info().position_endstop + for rail in self.rails] + stepdists = [rail.get_steppers()[0].get_step_dist() + for rail in self.rails] + self.calibration = RotaryDeltaCalibration( + shoulder_radius, shoulder_height, angles, upper_arms, lower_arms, + endstops, stepdists) + # Setup iterative solver + for r, a, ua, la in zip(self.rails, angles, upper_arms, lower_arms): + r.setup_itersolve('rotary_delta_stepper_alloc', + shoulder_radius, shoulder_height, + math.radians(a), ua, la) + for s in self.get_steppers(): + s.set_trapq(toolhead.get_trapq()) + toolhead.register_step_generator(s.generate_steps) + # Setup boundary checks + self.need_home = True + self.limit_xy2 = -1. + eangles = [r.calc_position_from_coord([0., 0., ep]) + for r, ep in zip(self.rails, endstops)] + self.home_position = tuple( + self.calibration.actuator_to_cartesian(eangles)) + self.max_z = min(endstops) + self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z) + min_ua = min([shoulder_radius + ua for ua in upper_arms]) + min_la = min([la - shoulder_radius for la in lower_arms]) + self.max_xy2 = min(min_ua, min_la)**2 + arm_z = [self.calibration.elbow_coord(i, ea)[2] + for i, ea in enumerate(eangles)] + self.limit_z = min([az - la for az, la in zip(arm_z, lower_arms)]) + logging.info( + "Delta max build height %.2fmm (radius tapered above %.2fmm)" + % (self.max_z, self.limit_z)) + self.set_position([0., 0., 0.], ()) + def get_steppers(self, flags=""): + return [s for rail in self.rails for s in rail.get_steppers()] + def calc_tag_position(self): + spos = [rail.get_tag_position() for rail in self.rails] + return self.calibration.actuator_to_cartesian(spos) + def set_position(self, newpos, homing_axes): + for rail in self.rails: + rail.set_position(newpos) + self.limit_xy2 = -1. + if tuple(homing_axes) == (0, 1, 2): + self.need_home = False + def home(self, homing_state): + # All axes are homed simultaneously + homing_state.set_axes([0, 1, 2]) + forcepos = list(self.home_position) + #min_angles = [-.5 * math.pi] * 3 + #forcepos[2] = self.calibration.actuator_to_cartesian(min_angles)[2] + forcepos[2] = -1. + homing_state.home_rails(self.rails, forcepos, self.home_position) + def _motor_off(self, print_time): + self.limit_xy2 = -1. + self.need_home = True + def check_move(self, move): + end_pos = move.end_pos + end_xy2 = end_pos[0]**2 + end_pos[1]**2 + if end_xy2 <= self.limit_xy2 and not move.axes_d[2]: + # Normal XY move + return + if self.need_home: + raise homing.EndstopMoveError(end_pos, "Must home first") + end_z = end_pos[2] + limit_xy2 = self.max_xy2 + if end_z > self.limit_z: + limit_xy2 = min(limit_xy2, (self.max_z - end_z)**2) + if end_xy2 > limit_xy2 or end_z > self.max_z or end_z < self.min_z: + # Move out of range - verify not a homing move + if (end_pos[:2] != self.home_position[:2] + or end_z < self.min_z or end_z > self.home_position[2]): + raise homing.EndstopMoveError(end_pos) + limit_xy2 = -1. + if move.axes_d[2]: + move.limit_speed(self.max_z_velocity, move.accel) + limit_xy2 = -1. + self.limit_xy2 = limit_xy2 + def get_status(self): + return {'homed_axes': '' if self.need_home else 'XYZ'} + def get_calibration(self): + return self.calibration + +# Rotary delta parameter calibration for DELTA_CALIBRATE tool +class RotaryDeltaCalibration: + def __init__(self, shoulder_radius, shoulder_height, angles, + upper_arms, lower_arms, endstops, stepdists): + self.shoulder_radius = shoulder_radius + self.shoulder_height = shoulder_height + self.angles = angles + self.upper_arms = upper_arms + self.lower_arms = lower_arms + self.endstops = endstops + self.stepdists = stepdists + # Calculate the absolute angle of each endstop + ffi_main, self.ffi_lib = chelper.get_ffi() + self.sks = [ffi_main.gc(self.ffi_lib.rotary_delta_stepper_alloc( + shoulder_radius, shoulder_height, math.radians(a), ua, la), + self.ffi_lib.free) + for a, ua, la in zip(angles, upper_arms, lower_arms)] + self.abs_endstops = [ + self.ffi_lib.itersolve_calc_position_from_coord(sk, 0., 0., es) + for sk, es in zip(self.sks, endstops)] + def coordinate_descent_params(self, is_extended): + # Determine adjustment parameters (for use with coordinate_descent) + adj_params = ('shoulder_height', 'endstop_a', 'endstop_b', 'endstop_c') + if is_extended: + adj_params += ('shoulder_radius', 'angle_a', 'angle_b') + params = { 'shoulder_radius': self.shoulder_radius, + 'shoulder_height': self.shoulder_height } + for i, axis in enumerate('abc'): + params['angle_'+axis] = self.angles[i] + params['upper_arm_'+axis] = self.upper_arms[i] + params['lower_arm_'+axis] = self.lower_arms[i] + params['endstop_'+axis] = self.endstops[i] + params['stepdist_'+axis] = self.stepdists[i] + return adj_params, params + def new_calibration(self, params): + # Create a new calibration object from coordinate_descent params + shoulder_radius = params['shoulder_radius'] + shoulder_height = params['shoulder_height'] + angles = [params['angle_'+a] for a in 'abc'] + upper_arms = [params['upper_arm_'+a] for a in 'abc'] + lower_arms = [params['lower_arm_'+a] for a in 'abc'] + endstops = [params['endstop_'+a] for a in 'abc'] + stepdists = [params['stepdist_'+a] for a in 'abc'] + return RotaryDeltaCalibration( + shoulder_radius, shoulder_height, angles, upper_arms, lower_arms, + endstops, stepdists) + def elbow_coord(self, elbow_id, spos): + # Calculate elbow position in coordinate system at shoulder joint + sj_elbow_x = self.upper_arms[elbow_id] * math.cos(spos) + sj_elbow_y = self.upper_arms[elbow_id] * math.sin(spos) + # Shift and rotate to main cartesian coordinate system + angle = math.radians(self.angles[elbow_id]) + x = (sj_elbow_x + self.shoulder_radius) * math.cos(angle) + y = (sj_elbow_x + self.shoulder_radius) * math.sin(angle) + z = sj_elbow_y + self.shoulder_height + return (x, y, z) + def actuator_to_cartesian(self, spos): + sphere_coords = [self.elbow_coord(i, sp) for i, sp in enumerate(spos)] + lower_arm2 = [la**2 for la in self.lower_arms] + return mathutil.trilateration(sphere_coords, lower_arm2) + def get_position_from_stable(self, stable_position): + # Return cartesian coordinates for the given stable_position + spos = [ea - sp * sd + for ea, sp, sd in zip(self.abs_endstops, stable_position, + self.stepdists)] + return self.actuator_to_cartesian(spos) + def calc_stable_position(self, coord): + # Return a stable_position from a cartesian coordinate + pos = [ self.ffi_lib.itersolve_calc_position_from_coord( + sk, coord[0], coord[1], coord[2]) + for sk in self.sks ] + return [(ep - sp) / sd + for sd, ep, sp in zip(self.stepdists, self.abs_endstops, pos)] + def save_state(self, configfile): + # Save the current parameters (for use with SAVE_CONFIG) + configfile.set('printer', 'shoulder_radius', "%.6f" + % (self.shoulder_radius,)) + configfile.set('printer', 'shoulder_height', "%.6f" + % (self.shoulder_height,)) + for i, axis in enumerate('abc'): + configfile.set('stepper_'+axis, 'angle', "%.6f" % (self.angles[i],)) + configfile.set('stepper_'+axis, 'position_endstop', + "%.6f" % (self.endstops[i],)) + gcode = configfile.get_printer().lookup_object("gcode") + gcode.respond_info( + "stepper_a: position_endstop: %.6f angle: %.6f\n" + "stepper_b: position_endstop: %.6f angle: %.6f\n" + "stepper_c: position_endstop: %.6f angle: %.6f\n" + "shoulder_radius: %.6f shoulder_height: %.6f" + % (self.endstops[0], self.angles[0], + self.endstops[1], self.angles[1], + self.endstops[2], self.angles[2], + self.shoulder_radius, self.shoulder_height)) + +def load_kinematics(toolhead, config): + return RotaryDeltaKinematics(toolhead, config) |