aboutsummaryrefslogtreecommitdiffstats
path: root/klippy
diff options
context:
space:
mode:
authorKevin O'Connor <kevin@koconnor.net>2019-10-19 21:04:42 -0400
committerKevin O'Connor <kevin@koconnor.net>2020-01-06 11:52:42 -0500
commitac863a95b6689a0975e259512b9e49add306f2b4 (patch)
tree4014f8262e103aaf572e41696b1c5be9578a442b /klippy
parenta56484c98b4369505c62a85f3fd6b4483f453e65 (diff)
downloadkutter-ac863a95b6689a0975e259512b9e49add306f2b4.tar.gz
kutter-ac863a95b6689a0975e259512b9e49add306f2b4.tar.xz
kutter-ac863a95b6689a0975e259512b9e49add306f2b4.zip
rotary_delta: Initial support for rotary delta kinematics
Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
Diffstat (limited to 'klippy')
-rw-r--r--klippy/chelper/__init__.py10
-rw-r--r--klippy/chelper/kin_rotary_delta.c73
-rw-r--r--klippy/kinematics/rotary_delta.py224
3 files changed, 305 insertions, 2 deletions
diff --git a/klippy/chelper/__init__.py b/klippy/chelper/__init__.py
index b76a795a..73058081 100644
--- a/klippy/chelper/__init__.py
+++ b/klippy/chelper/__init__.py
@@ -17,7 +17,7 @@ COMPILE_CMD = ("gcc -Wall -g -O2 -shared -fPIC"
SOURCE_FILES = [
'pyhelper.c', 'serialqueue.c', 'stepcompress.c', 'itersolve.c', 'trapq.c',
'kin_cartesian.c', 'kin_corexy.c', 'kin_delta.c', 'kin_polar.c',
- 'kin_winch.c', 'kin_extruder.c',
+ 'kin_rotary_delta.c', 'kin_winch.c', 'kin_extruder.c',
]
DEST_LIB = "c_helper.so"
OTHER_FILES = [
@@ -86,6 +86,12 @@ defs_kin_polar = """
struct stepper_kinematics *polar_stepper_alloc(char type);
"""
+defs_kin_rotary_delta = """
+ struct stepper_kinematics *rotary_delta_stepper_alloc(
+ double shoulder_radius, double shoulder_height
+ , double angle, double upper_arm, double lower_arm);
+"""
+
defs_kin_winch = """
struct stepper_kinematics *winch_stepper_alloc(double anchor_x
, double anchor_y, double anchor_z);
@@ -138,7 +144,7 @@ defs_all = [
defs_pyhelper, defs_serialqueue, defs_std,
defs_stepcompress, defs_itersolve, defs_trapq,
defs_kin_cartesian, defs_kin_corexy, defs_kin_delta, defs_kin_polar,
- defs_kin_winch, defs_kin_extruder
+ defs_kin_rotary_delta, defs_kin_winch, defs_kin_extruder
]
# Return the list of file modification times
diff --git a/klippy/chelper/kin_rotary_delta.c b/klippy/chelper/kin_rotary_delta.c
new file mode 100644
index 00000000..7859f6fc
--- /dev/null
+++ b/klippy/chelper/kin_rotary_delta.c
@@ -0,0 +1,73 @@
+// Rotary delta kinematics stepper pulse time generation
+//
+// Copyright (C) 2019 Kevin O'Connor <kevin@koconnor.net>
+//
+// This file may be distributed under the terms of the GNU GPLv3 license.
+
+#include <math.h> // sqrt
+#include <stddef.h> // offsetof
+#include <stdlib.h> // malloc
+#include <string.h> // memset
+#include "compiler.h" // __visible
+#include "itersolve.h" // struct stepper_kinematics
+#include "trapq.h" // move_get_coord
+
+// The arm angle calculation is based on the following two formulas:
+// elbow_x**2 + elbow_y**2 = upper_arm**2
+// (effector_x - elbow_x)**2 + (effector_y - elbow_y)**2 = lower_arm**2
+
+// Calculate upper arm angle given xy position of effector joint
+// (relative to shoulder joint), upper arm length, and lower arm length.
+static inline double
+rotary_two_arm_calc(double dx, double dy, double upper_arm2, double lower_arm2)
+{
+ // Determine constants such that: elbow_y = c1 - c2*elbow_x
+ double inv_dy = 1. / dy;
+ double c1 = .5 * inv_dy * (dx*dx + dy*dy + upper_arm2 - lower_arm2);
+ double c2 = dx * inv_dy;
+ // Calculate scaled elbow coordinates via quadratic equation.
+ double scale = c2*c2 + 1.0;
+ double scaled_elbow_x = c1*c2 + sqrt(scale*upper_arm2 - c1*c1);
+ double scaled_elbow_y = c1*scale - c2*scaled_elbow_x;
+ // Calculate angle in radians
+ return atan2(scaled_elbow_y, scaled_elbow_x);
+}
+
+struct rotary_stepper {
+ struct stepper_kinematics sk;
+ double cos, sin, shoulder_radius, shoulder_height;
+ double upper_arm2, lower_arm2;
+};
+
+static double
+rotary_stepper_calc_position(struct stepper_kinematics *sk, struct move *m
+ , double move_time)
+{
+ struct rotary_stepper *rs = container_of(sk, struct rotary_stepper, sk);
+ struct coord c = move_get_coord(m, move_time);
+ // Rotate and shift axes to an origin at shoulder joint with upper
+ // arm constrained to xy plane and x aligned to shoulder platform.
+ double sjz = c.y * rs->cos - c.x * rs->sin;
+ double sjx = c.x * rs->cos + c.y * rs->sin - rs->shoulder_radius;
+ double sjy = c.z - rs->shoulder_height;
+ // Calculate angle in radians
+ return rotary_two_arm_calc(sjx, sjy, rs->upper_arm2
+ , rs->lower_arm2 - sjz*sjz);
+}
+
+struct stepper_kinematics * __visible
+rotary_delta_stepper_alloc(double shoulder_radius, double shoulder_height
+ , double angle, double upper_arm, double lower_arm)
+{
+ struct rotary_stepper *rs = malloc(sizeof(*rs));
+ memset(rs, 0, sizeof(*rs));
+ rs->cos = cos(angle);
+ rs->sin = sin(angle);
+ rs->shoulder_radius = shoulder_radius;
+ rs->shoulder_height = shoulder_height;
+ rs->upper_arm2 = upper_arm * upper_arm;
+ rs->lower_arm2 = lower_arm * lower_arm;
+ rs->sk.calc_position_cb = rotary_stepper_calc_position;
+ rs->sk.active_flags = AF_X | AF_Y | AF_Z;
+ return &rs->sk;
+}
diff --git a/klippy/kinematics/rotary_delta.py b/klippy/kinematics/rotary_delta.py
new file mode 100644
index 00000000..9e928d39
--- /dev/null
+++ b/klippy/kinematics/rotary_delta.py
@@ -0,0 +1,224 @@
+# Code for handling the kinematics of rotary delta robots
+#
+# Copyright (C) 2019 Kevin O'Connor <kevin@koconnor.net>
+#
+# This file may be distributed under the terms of the GNU GPLv3 license.
+import math, logging
+import stepper, homing, mathutil, chelper
+
+class RotaryDeltaKinematics:
+ def __init__(self, toolhead, config):
+ # Setup tower rails
+ stepper_configs = [config.getsection('stepper_' + a) for a in 'abc']
+ rail_a = stepper.PrinterRail(
+ stepper_configs[0], need_position_minmax=False,
+ units_in_radians=True)
+ a_endstop = rail_a.get_homing_info().position_endstop
+ rail_b = stepper.PrinterRail(
+ stepper_configs[1], need_position_minmax=False,
+ default_position_endstop=a_endstop, units_in_radians=True)
+ rail_c = stepper.PrinterRail(
+ stepper_configs[2], need_position_minmax=False,
+ default_position_endstop=a_endstop, units_in_radians=True)
+ self.rails = [rail_a, rail_b, rail_c]
+ config.get_printer().register_event_handler("stepper_enable:motor_off",
+ self._motor_off)
+ # Setup stepper max halt velocity
+ max_velocity, max_accel = toolhead.get_max_velocity()
+ self.max_z_velocity = config.getfloat('max_z_velocity', max_velocity,
+ above=0., maxval=max_velocity)
+ for rail in self.rails:
+ rail.set_max_jerk(9999999.9, 9999999.9)
+ # Read config
+ shoulder_radius = config.getfloat('shoulder_radius', above=0.)
+ shoulder_height = config.getfloat('shoulder_height', above=0.)
+ a_upper_arm = stepper_configs[0].getfloat('upper_arm_length', above=0.)
+ upper_arms = [
+ sconfig.getfloat('upper_arm_length', a_upper_arm, above=0.)
+ for sconfig in stepper_configs]
+ a_lower_arm = stepper_configs[0].getfloat('lower_arm_length', above=0.)
+ lower_arms = [
+ sconfig.getfloat('lower_arm_length', a_lower_arm, above=0.)
+ for sconfig in stepper_configs]
+ angles = [sconfig.getfloat('angle', angle)
+ for sconfig, angle in zip(stepper_configs, [30., 150., 270.])]
+ # Setup rotary delta calibration helper
+ endstops = [rail.get_homing_info().position_endstop
+ for rail in self.rails]
+ stepdists = [rail.get_steppers()[0].get_step_dist()
+ for rail in self.rails]
+ self.calibration = RotaryDeltaCalibration(
+ shoulder_radius, shoulder_height, angles, upper_arms, lower_arms,
+ endstops, stepdists)
+ # Setup iterative solver
+ for r, a, ua, la in zip(self.rails, angles, upper_arms, lower_arms):
+ r.setup_itersolve('rotary_delta_stepper_alloc',
+ shoulder_radius, shoulder_height,
+ math.radians(a), ua, la)
+ for s in self.get_steppers():
+ s.set_trapq(toolhead.get_trapq())
+ toolhead.register_step_generator(s.generate_steps)
+ # Setup boundary checks
+ self.need_home = True
+ self.limit_xy2 = -1.
+ eangles = [r.calc_position_from_coord([0., 0., ep])
+ for r, ep in zip(self.rails, endstops)]
+ self.home_position = tuple(
+ self.calibration.actuator_to_cartesian(eangles))
+ self.max_z = min(endstops)
+ self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
+ min_ua = min([shoulder_radius + ua for ua in upper_arms])
+ min_la = min([la - shoulder_radius for la in lower_arms])
+ self.max_xy2 = min(min_ua, min_la)**2
+ arm_z = [self.calibration.elbow_coord(i, ea)[2]
+ for i, ea in enumerate(eangles)]
+ self.limit_z = min([az - la for az, la in zip(arm_z, lower_arms)])
+ logging.info(
+ "Delta max build height %.2fmm (radius tapered above %.2fmm)"
+ % (self.max_z, self.limit_z))
+ self.set_position([0., 0., 0.], ())
+ def get_steppers(self, flags=""):
+ return [s for rail in self.rails for s in rail.get_steppers()]
+ def calc_tag_position(self):
+ spos = [rail.get_tag_position() for rail in self.rails]
+ return self.calibration.actuator_to_cartesian(spos)
+ def set_position(self, newpos, homing_axes):
+ for rail in self.rails:
+ rail.set_position(newpos)
+ self.limit_xy2 = -1.
+ if tuple(homing_axes) == (0, 1, 2):
+ self.need_home = False
+ def home(self, homing_state):
+ # All axes are homed simultaneously
+ homing_state.set_axes([0, 1, 2])
+ forcepos = list(self.home_position)
+ #min_angles = [-.5 * math.pi] * 3
+ #forcepos[2] = self.calibration.actuator_to_cartesian(min_angles)[2]
+ forcepos[2] = -1.
+ homing_state.home_rails(self.rails, forcepos, self.home_position)
+ def _motor_off(self, print_time):
+ self.limit_xy2 = -1.
+ self.need_home = True
+ def check_move(self, move):
+ end_pos = move.end_pos
+ end_xy2 = end_pos[0]**2 + end_pos[1]**2
+ if end_xy2 <= self.limit_xy2 and not move.axes_d[2]:
+ # Normal XY move
+ return
+ if self.need_home:
+ raise homing.EndstopMoveError(end_pos, "Must home first")
+ end_z = end_pos[2]
+ limit_xy2 = self.max_xy2
+ if end_z > self.limit_z:
+ limit_xy2 = min(limit_xy2, (self.max_z - end_z)**2)
+ if end_xy2 > limit_xy2 or end_z > self.max_z or end_z < self.min_z:
+ # Move out of range - verify not a homing move
+ if (end_pos[:2] != self.home_position[:2]
+ or end_z < self.min_z or end_z > self.home_position[2]):
+ raise homing.EndstopMoveError(end_pos)
+ limit_xy2 = -1.
+ if move.axes_d[2]:
+ move.limit_speed(self.max_z_velocity, move.accel)
+ limit_xy2 = -1.
+ self.limit_xy2 = limit_xy2
+ def get_status(self):
+ return {'homed_axes': '' if self.need_home else 'XYZ'}
+ def get_calibration(self):
+ return self.calibration
+
+# Rotary delta parameter calibration for DELTA_CALIBRATE tool
+class RotaryDeltaCalibration:
+ def __init__(self, shoulder_radius, shoulder_height, angles,
+ upper_arms, lower_arms, endstops, stepdists):
+ self.shoulder_radius = shoulder_radius
+ self.shoulder_height = shoulder_height
+ self.angles = angles
+ self.upper_arms = upper_arms
+ self.lower_arms = lower_arms
+ self.endstops = endstops
+ self.stepdists = stepdists
+ # Calculate the absolute angle of each endstop
+ ffi_main, self.ffi_lib = chelper.get_ffi()
+ self.sks = [ffi_main.gc(self.ffi_lib.rotary_delta_stepper_alloc(
+ shoulder_radius, shoulder_height, math.radians(a), ua, la),
+ self.ffi_lib.free)
+ for a, ua, la in zip(angles, upper_arms, lower_arms)]
+ self.abs_endstops = [
+ self.ffi_lib.itersolve_calc_position_from_coord(sk, 0., 0., es)
+ for sk, es in zip(self.sks, endstops)]
+ def coordinate_descent_params(self, is_extended):
+ # Determine adjustment parameters (for use with coordinate_descent)
+ adj_params = ('shoulder_height', 'endstop_a', 'endstop_b', 'endstop_c')
+ if is_extended:
+ adj_params += ('shoulder_radius', 'angle_a', 'angle_b')
+ params = { 'shoulder_radius': self.shoulder_radius,
+ 'shoulder_height': self.shoulder_height }
+ for i, axis in enumerate('abc'):
+ params['angle_'+axis] = self.angles[i]
+ params['upper_arm_'+axis] = self.upper_arms[i]
+ params['lower_arm_'+axis] = self.lower_arms[i]
+ params['endstop_'+axis] = self.endstops[i]
+ params['stepdist_'+axis] = self.stepdists[i]
+ return adj_params, params
+ def new_calibration(self, params):
+ # Create a new calibration object from coordinate_descent params
+ shoulder_radius = params['shoulder_radius']
+ shoulder_height = params['shoulder_height']
+ angles = [params['angle_'+a] for a in 'abc']
+ upper_arms = [params['upper_arm_'+a] for a in 'abc']
+ lower_arms = [params['lower_arm_'+a] for a in 'abc']
+ endstops = [params['endstop_'+a] for a in 'abc']
+ stepdists = [params['stepdist_'+a] for a in 'abc']
+ return RotaryDeltaCalibration(
+ shoulder_radius, shoulder_height, angles, upper_arms, lower_arms,
+ endstops, stepdists)
+ def elbow_coord(self, elbow_id, spos):
+ # Calculate elbow position in coordinate system at shoulder joint
+ sj_elbow_x = self.upper_arms[elbow_id] * math.cos(spos)
+ sj_elbow_y = self.upper_arms[elbow_id] * math.sin(spos)
+ # Shift and rotate to main cartesian coordinate system
+ angle = math.radians(self.angles[elbow_id])
+ x = (sj_elbow_x + self.shoulder_radius) * math.cos(angle)
+ y = (sj_elbow_x + self.shoulder_radius) * math.sin(angle)
+ z = sj_elbow_y + self.shoulder_height
+ return (x, y, z)
+ def actuator_to_cartesian(self, spos):
+ sphere_coords = [self.elbow_coord(i, sp) for i, sp in enumerate(spos)]
+ lower_arm2 = [la**2 for la in self.lower_arms]
+ return mathutil.trilateration(sphere_coords, lower_arm2)
+ def get_position_from_stable(self, stable_position):
+ # Return cartesian coordinates for the given stable_position
+ spos = [ea - sp * sd
+ for ea, sp, sd in zip(self.abs_endstops, stable_position,
+ self.stepdists)]
+ return self.actuator_to_cartesian(spos)
+ def calc_stable_position(self, coord):
+ # Return a stable_position from a cartesian coordinate
+ pos = [ self.ffi_lib.itersolve_calc_position_from_coord(
+ sk, coord[0], coord[1], coord[2])
+ for sk in self.sks ]
+ return [(ep - sp) / sd
+ for sd, ep, sp in zip(self.stepdists, self.abs_endstops, pos)]
+ def save_state(self, configfile):
+ # Save the current parameters (for use with SAVE_CONFIG)
+ configfile.set('printer', 'shoulder_radius', "%.6f"
+ % (self.shoulder_radius,))
+ configfile.set('printer', 'shoulder_height', "%.6f"
+ % (self.shoulder_height,))
+ for i, axis in enumerate('abc'):
+ configfile.set('stepper_'+axis, 'angle', "%.6f" % (self.angles[i],))
+ configfile.set('stepper_'+axis, 'position_endstop',
+ "%.6f" % (self.endstops[i],))
+ gcode = configfile.get_printer().lookup_object("gcode")
+ gcode.respond_info(
+ "stepper_a: position_endstop: %.6f angle: %.6f\n"
+ "stepper_b: position_endstop: %.6f angle: %.6f\n"
+ "stepper_c: position_endstop: %.6f angle: %.6f\n"
+ "shoulder_radius: %.6f shoulder_height: %.6f"
+ % (self.endstops[0], self.angles[0],
+ self.endstops[1], self.angles[1],
+ self.endstops[2], self.angles[2],
+ self.shoulder_radius, self.shoulder_height))
+
+def load_kinematics(toolhead, config):
+ return RotaryDeltaKinematics(toolhead, config)