aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorKevin O'Connor <kevin@koconnor.net>2016-09-15 12:20:49 -0400
committerKevin O'Connor <kevin@koconnor.net>2016-11-14 12:35:36 -0500
commit941427554a23dd0ae963eb9df7d2724c7c90809b (patch)
treeda98961e87b008d7cda3e1e5a4b8d37806f3ea5e
parent7554c7f69423bf3d22f340a8b4851c25de855983 (diff)
downloadkutter-941427554a23dd0ae963eb9df7d2724c7c90809b.tar.gz
kutter-941427554a23dd0ae963eb9df7d2724c7c90809b.tar.xz
kutter-941427554a23dd0ae963eb9df7d2724c7c90809b.zip
delta: Initial support for linear delta kinematics
This adds support for delta based robots. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
-rw-r--r--config/example-delta.cfg94
-rw-r--r--config/example.cfg5
-rw-r--r--docs/Todo.md2
-rw-r--r--klippy/chelper.py8
-rw-r--r--klippy/delta.py310
-rw-r--r--klippy/mcu.py13
-rw-r--r--klippy/stepcompress.c73
-rw-r--r--klippy/toolhead.py7
8 files changed, 507 insertions, 5 deletions
diff --git a/config/example-delta.cfg b/config/example-delta.cfg
new file mode 100644
index 00000000..777f7dc2
--- /dev/null
+++ b/config/example-delta.cfg
@@ -0,0 +1,94 @@
+# This file serves as documentation for config parameters of delta
+# style printers. One may copy and edit this file to configure a new
+# delta printer. Only parameters unique to delta printers are
+# described here - see the "example.cfg" file for description of
+# common config parameters.
+
+# DO NOT COPY THIS FILE WITHOUT CAREFULLY READING AND UPDATING IT
+# FIRST. Incorrectly configured parameters may cause damage.
+
+# The stepper_a section describes the stepper controlling the front
+# left tower (at 210 degrees). This section also controls the homing
+# parameters (homing_speed, homing_retract_dist) and maximum tower
+# length (position_max) for all towers.
+[stepper_a]
+step_pin: ar54
+dir_pin: ar55
+enable_pin: !ar38
+step_distance: .01
+max_velocity: 200
+max_accel: 3000
+endstop_pin: ^ar2
+homing_speed: 50.0
+position_endstop: 297.05
+position_max: 297.55
+
+# The stepper_b section describes the stepper controlling the front
+# right tower (at 330 degrees)
+[stepper_b]
+step_pin: ar60
+dir_pin: ar61
+enable_pin: !ar56
+step_distance: .01
+max_velocity: 200
+max_accel: 3000
+endstop_pin: ^ar15
+position_endstop: 297.05
+
+# The stepper_c section describes the stepper controlling the rear
+# tower (at 90 degrees)
+[stepper_c]
+step_pin: ar46
+dir_pin: ar48
+enable_pin: !ar62
+step_distance: .01
+max_velocity: 200
+max_accel: 3000
+endstop_pin: ^ar19
+position_endstop: 297.05
+
+[extruder]
+step_pin: ar26
+dir_pin: ar28
+enable_pin: !ar24
+step_distance: .0022
+max_velocity: 200
+max_accel: 3000
+heater_pin: ar10
+thermistor_pin: analog13
+thermistor_type: ATC Semitec 104GT-2
+control: pid
+pid_Kp: 22.2
+pid_Ki: 1.08
+pid_Kd: 114
+min_temp: 0
+max_temp: 250
+
+[heater_bed]
+heater_pin: ar8
+thermistor_pin: analog14
+thermistor_type: EPCOS 100K B57560G104F
+control: watermark
+min_temp: 0
+max_temp: 130
+
+# Extruder print fan (omit section if fan not present)
+#[fan]
+#pin: ar9
+#hard_pwm: 1
+
+[mcu]
+serial: /dev/ttyACM0
+baud: 250000
+pin_map: arduino
+
+[printer]
+kinematics: delta
+# This option must be "delta" for linear delta printers
+delta_arm_length: 333.0
+# Length (in mm) of the diagonal rods that connect the linear axes
+# to the print head
+delta_radius: 174.75
+# Radius (in mm) of the horizontal circle formed by the three linear
+# axis towers. This parameter may also be calculated as:
+# delta_radius = smooth_rod_offset - effector_offset - carriage_offset
diff --git a/config/example.cfg b/config/example.cfg
index a8f7aee4..1bc1dd59 100644
--- a/config/example.cfg
+++ b/config/example.cfg
@@ -1,5 +1,6 @@
# This file serves as documentation for config parameters. One may
-# copy and edit this file to configure a new printer.
+# copy and edit this file to configure a new cartesian style
+# printer. For delta style printers, see the "example-delta.cfg" file.
# DO NOT COPY THIS FILE WITHOUT CAREFULLY READING AND UPDATING IT
# FIRST. Incorrectly configured parameters may cause damage.
@@ -189,7 +190,7 @@ custom:
# The printer section controls high level printer settings
[printer]
kinematics: cartesian
-# This option must currently always be "cartesian"
+# This option must be "cartesian" for cartesian printers
motor_off_time: 60
# Time (in seconds) of idle time before the printer will try to
# disable active motors.
diff --git a/docs/Todo.md b/docs/Todo.md
index 0f454d4c..530104d8 100644
--- a/docs/Todo.md
+++ b/docs/Todo.md
@@ -126,7 +126,7 @@ Hardware features
* Smoothieboard / NXP LPC1769 (ARM cortex-M3)
* Unix based scheduling; Unix based real-time scheduling
-* Support for additional kinematics: delta, scara, corexy, etc.
+* Support for additional kinematics: scara, corexy, etc.
* Support shared motor enable GPIO lines.
diff --git a/klippy/chelper.py b/klippy/chelper.py
index a3ce4a95..d12946be 100644
--- a/klippy/chelper.py
+++ b/klippy/chelper.py
@@ -23,6 +23,14 @@ defs_stepcompress = """
int32_t stepcompress_push_sqrt(struct stepcompress *sc
, double steps, double step_offset
, double clock_offset, double sqrt_offset, double factor);
+ int32_t stepcompress_push_delta_const(
+ struct stepcompress *sc, double clock_offset, double dist
+ , double step_dist, double start_pos, double closest_height2
+ , double height, double movez_r, double inv_velocity);
+ int32_t stepcompress_push_delta_accel(
+ struct stepcompress *sc, double clock_offset, double dist
+ , double step_dist, double start_pos, double closest_height2
+ , double height, double movez_r, double accel_multiplier);
void stepcompress_reset(struct stepcompress *sc, uint64_t last_step_clock);
void stepcompress_queue_msg(struct stepcompress *sc
, uint32_t *data, int len);
diff --git a/klippy/delta.py b/klippy/delta.py
new file mode 100644
index 00000000..0fa8caf2
--- /dev/null
+++ b/klippy/delta.py
@@ -0,0 +1,310 @@
+# Code for handling the kinematics of linear delta robots
+#
+# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
+#
+# This file may be distributed under the terms of the GNU GPLv3 license.
+import math, logging
+import stepper, homing
+
+StepList = (0, 1, 2)
+
+class DeltaKinematics:
+ def __init__(self, printer, config):
+ steppers = ['stepper_a', 'stepper_b', 'stepper_c']
+ self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
+ for n in steppers]
+ radius = config.getfloat('delta_radius')
+ arm_length = config.getfloat('delta_arm_length')
+ self.arm_length2 = arm_length**2
+ self.max_xy2 = min(radius, arm_length - radius)**2
+ self.limit_xy2 = -1.
+ tower_height_at_zeros = math.sqrt(self.arm_length2 - radius**2)
+ self.max_z = self.steppers[0].position_max
+ self.limit_z = self.max_z - (arm_length - tower_height_at_zeros)
+ sin = lambda angle: math.sin(math.radians(angle))
+ cos = lambda angle: math.cos(math.radians(angle))
+ self.towers = [
+ (cos(210.)*radius, sin(210.)*radius),
+ (cos(330.)*radius, sin(330.)*radius),
+ (cos(90.)*radius, sin(90.)*radius)]
+ self.stepper_pos = self.cartesian_to_actuator([0., 0., 0.])
+ def build_config(self):
+ for stepper in self.steppers:
+ stepper.set_max_jerk(0.005 * stepper.max_accel) # XXX
+ for stepper in self.steppers:
+ stepper.build_config()
+ def get_max_speed(self):
+ # XXX - this returns conservative values
+ max_xy_speed = min(s.max_velocity for s in self.steppers)
+ max_xy_accel = min(s.max_accel for s in self.steppers)
+ return max_xy_speed, max_xy_accel
+ def cartesian_to_actuator(self, coord):
+ return [int((math.sqrt(self.arm_length2
+ - (self.towers[i][0] - coord[0])**2
+ - (self.towers[i][1] - coord[1])**2) + coord[2])
+ * self.steppers[i].inv_step_dist + 0.5)
+ for i in StepList]
+ def actuator_to_cartesian(self, pos):
+ # Based on code from Smoothieware
+ tower1 = list(self.towers[0]) + [pos[0]]
+ tower2 = list(self.towers[1]) + [pos[1]]
+ tower3 = list(self.towers[2]) + [pos[2]]
+
+ s12 = matrix_sub(tower1, tower2)
+ s23 = matrix_sub(tower2, tower3)
+ s13 = matrix_sub(tower1, tower3)
+
+ normal = matrix_cross(s12, s23)
+
+ magsq_s12 = matrix_magsq(s12)
+ magsq_s23 = matrix_magsq(s23)
+ magsq_s13 = matrix_magsq(s13)
+
+ inv_nmag_sq = 1.0 / matrix_magsq(normal)
+ q = 0.5 * inv_nmag_sq
+
+ a = q * magsq_s23 * matrix_dot(s12, s13)
+ b = -q * magsq_s13 * matrix_dot(s12, s23) # negate because we use s12 instead of s21
+ c = q * magsq_s12 * matrix_dot(s13, s23)
+
+ circumcenter = [tower1[0] * a + tower2[0] * b + tower3[0] * c,
+ tower1[1] * a + tower2[1] * b + tower3[1] * c,
+ tower1[2] * a + tower2[2] * b + tower3[2] * c]
+
+ r_sq = 0.5 * q * magsq_s12 * magsq_s23 * magsq_s13
+ dist = math.sqrt(inv_nmag_sq * (self.arm_length2 - r_sq))
+
+ return matrix_sub(circumcenter, matrix_mul(normal, dist))
+ def set_position(self, newpos):
+ self.stepper_pos = self.cartesian_to_actuator(newpos)
+ def get_homed_position(self):
+ pos = [(self.stepper_pos[i] + self.steppers[i].get_homed_offset())
+ * self.steppers[i].step_dist
+ for i in StepList]
+ return self.actuator_to_cartesian(pos)
+ def home(self, toolhead, axes):
+ # All axes are homed simultaneously
+ homing_state = homing.Homing(toolhead, [0, 1, 2])
+ s = self.steppers[0] # Assume homing parameters same for all steppers
+ self.limit_xy2 = self.max_xy2
+ # Initial homing
+ homepos = [0., 0., s.position_endstop, None]
+ coord = list(homepos)
+ coord[2] -= 1.5*(s.position_endstop)
+ homing_state.plan_home(list(coord), homepos, self.steppers
+ , s.homing_speed)
+ # Retract
+ coord[2] = homepos[2] - s.homing_retract_dist
+ homing_state.plan_move(list(coord), s.homing_speed)
+ # Home again
+ coord[2] -= s.homing_retract_dist
+ homing_state.plan_home(list(coord), homepos, self.steppers
+ , s.homing_speed/2.0)
+ return homing_state
+ def motor_off(self, move_time):
+ self.limit_xy2 = -1.
+ for stepper in self.steppers:
+ stepper.motor_enable(move_time, 0)
+ def query_endstops(self, move_time):
+ return homing.QueryEndstops(["a", "b", "c"], self.steppers)
+ def check_move(self, move):
+ end_pos = move.end_pos
+ xy2 = end_pos[0]**2 + end_pos[1]**2
+ if xy2 > self.limit_xy2 or end_pos[2] < 0.:
+ if self.limit_xy2 < 0.:
+ raise homing.EndstopError(end_pos, "Must home first")
+ raise homing.EndstopError(end_pos)
+ if end_pos[2] > self.limit_z:
+ if end_pos[2] > self.max_z or xy2 > (self.max_z - end_pos[2])**2:
+ raise homing.EndstopError(end_pos)
+ def move_z(self, move_time, move):
+ if not move.axes_d[2]:
+ return
+ inv_accel = 1. / move.accel
+ inv_cruise_v = 1. / move.cruise_v
+ for i in StepList:
+ towerx_d = self.towers[i][0] - move.start_pos[0]
+ towery_d = self.towers[i][1] - move.start_pos[1]
+ tower_d2 = towerx_d**2 + towery_d**2
+ height = math.sqrt(self.arm_length2 - tower_d2) + move.start_pos[2]
+
+ mcu_time, so = self.steppers[i].prep_move(move_time)
+ inv_step_dist = self.steppers[i].inv_step_dist
+ step_dist = self.steppers[i].step_dist
+ steps = move.axes_d[2] * inv_step_dist
+
+ step_pos = self.stepper_pos[i]
+ step_offset = step_pos - height * inv_step_dist
+
+ # Acceleration steps
+ accel_multiplier = 2.0 * step_dist * inv_accel
+ if move.accel_r:
+ #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
+ accel_time_offset = move.start_v * inv_accel
+ accel_sqrt_offset = accel_time_offset**2
+ accel_steps = move.accel_r * steps
+ count = so.step_sqrt(
+ mcu_time - accel_time_offset, accel_steps, step_offset
+ , accel_sqrt_offset, accel_multiplier)
+ step_pos += count
+ step_offset += count - accel_steps
+ mcu_time += move.accel_t
+ # Cruising steps
+ if move.cruise_r:
+ #t = pos/cruise_v
+ cruise_multiplier = step_dist * inv_cruise_v
+ cruise_steps = move.cruise_r * steps
+ count = so.step_factor(
+ mcu_time, cruise_steps, step_offset, cruise_multiplier)
+ step_pos += count
+ step_offset += count - cruise_steps
+ mcu_time += move.cruise_t
+ # Deceleration steps
+ if move.decel_r:
+ #t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
+ decel_time_offset = move.cruise_v * inv_accel
+ decel_sqrt_offset = decel_time_offset**2
+ decel_steps = move.decel_r * steps
+ count = so.step_sqrt(
+ mcu_time + decel_time_offset, decel_steps, step_offset
+ , decel_sqrt_offset, -accel_multiplier)
+ step_pos += count
+ self.stepper_pos[i] = step_pos
+ def move(self, move_time, move):
+ axes_d = move.axes_d
+ if not axes_d[0] and not axes_d[1]:
+ self.move_z(move_time, move)
+ return
+ move_d = move.move_d
+ movez_r = 0.
+ inv_movexy_d = 1. / move_d
+ inv_movexy_r = 1.
+ if axes_d[2]:
+ movez_r = axes_d[2] * inv_movexy_d
+ inv_movexy_d = 1. / math.sqrt(axes_d[0]**2 + axes_d[1]**2)
+ inv_movexy_r = move_d * inv_movexy_d
+
+ origx, origy, origz = move.start_pos[:3]
+
+ accel_t = move.accel_t
+ cruise_end_t = accel_t + move.cruise_t
+ accel_d = move.accel_r * move_d
+ cruise_end_d = accel_d + move.cruise_r * move_d
+
+ inv_cruise_v = 1. / move.cruise_v
+ inv_accel = 1. / move.accel
+ accel_time_offset = move.start_v * inv_accel
+ accel_multiplier = 2.0 * inv_accel
+ accel_offset = move.start_v**2 * 0.5 * inv_accel
+ decel_time_offset = move.cruise_v * inv_accel + cruise_end_t
+ decel_offset = move.cruise_v**2 * 0.5 * inv_accel + cruise_end_d
+
+ for i in StepList:
+ # Find point on line of movement closest to tower
+ towerx_d = self.towers[i][0] - origx
+ towery_d = self.towers[i][1] - origy
+ closestxy_d = (towerx_d*axes_d[0] + towery_d*axes_d[1])*inv_movexy_d
+ tangentxy_d2 = towerx_d**2 + towery_d**2 - closestxy_d**2
+ closest_height2 = self.arm_length2 - tangentxy_d2
+ closest_height = math.sqrt(closest_height2)
+ closest_d = closestxy_d * inv_movexy_r
+ closestz = origz + closest_d*movez_r
+
+ # Calculate accel/cruise/decel portions of move
+ reverse_d = closest_d + closest_height*movez_r*inv_movexy_r
+ accel_up_d = cruise_up_d = decel_up_d = 0.
+ accel_down_d = cruise_down_d = decel_down_d = 0.
+ if reverse_d <= 0.:
+ accel_down_d = accel_d
+ cruise_down_d = cruise_end_d
+ decel_down_d = move_d
+ elif reverse_d >= move_d:
+ accel_up_d = accel_d
+ cruise_up_d = cruise_end_d
+ decel_up_d = move_d
+ elif reverse_d < accel_d:
+ accel_up_d = reverse_d
+ accel_down_d = accel_d
+ cruise_down_d = cruise_end_d
+ decel_down_d = move_d
+ elif reverse_d < cruise_end_d:
+ accel_up_d = accel_d
+ cruise_up_d = reverse_d
+ cruise_down_d = cruise_end_d
+ decel_down_d = move_d
+ else:
+ accel_up_d = accel_d
+ cruise_up_d = cruise_end_d
+ decel_up_d = reverse_d
+ decel_down_d = move_d
+
+ # Generate steps
+ inv_step_dist = self.steppers[i].inv_step_dist
+ step_dist = self.steppers[i].step_dist
+ step_pos = self.stepper_pos[i]
+ height = step_pos*step_dist - closestz
+ mcu_time, so = self.steppers[i].prep_move(move_time)
+ if accel_up_d > 0.:
+ count = so.step_delta_accel(
+ mcu_time - accel_time_offset, closest_d - accel_up_d,
+ step_dist, closest_d + accel_offset,
+ closest_height2, height, movez_r, accel_multiplier)
+ step_pos += count
+ height += count * step_dist
+ if cruise_up_d > 0.:
+ count = so.step_delta_const(
+ mcu_time + accel_t, closest_d - cruise_up_d,
+ step_dist, closest_d - accel_d,
+ closest_height2, height, movez_r, inv_cruise_v)
+ step_pos += count
+ height += count * step_dist
+ if decel_up_d > 0.:
+ count = so.step_delta_accel(
+ mcu_time + decel_time_offset, closest_d - decel_up_d,
+ step_dist, closest_d - decel_offset,
+ closest_height2, height, movez_r, -accel_multiplier)
+ step_pos += count
+ height += count * step_dist
+ if accel_down_d > 0.:
+ count = so.step_delta_accel(
+ mcu_time - accel_time_offset, closest_d - accel_down_d,
+ -step_dist, closest_d + accel_offset,
+ closest_height2, height, movez_r, accel_multiplier)
+ step_pos += count
+ height += count * step_dist
+ if cruise_down_d > 0.:
+ count = so.step_delta_const(
+ mcu_time + accel_t, closest_d - cruise_down_d,
+ -step_dist, closest_d - accel_d,
+ closest_height2, height, movez_r, inv_cruise_v)
+ step_pos += count
+ height += count * step_dist
+ if decel_down_d > 0.:
+ count = so.step_delta_accel(
+ mcu_time + decel_time_offset, closest_d - decel_down_d,
+ -step_dist, closest_d - decel_offset,
+ closest_height2, height, movez_r, -accel_multiplier)
+ step_pos += count
+ self.stepper_pos[i] = step_pos
+
+
+######################################################################
+# Matrix helper functions for 3x1 matrices
+######################################################################
+
+def matrix_cross(m1, m2):
+ return [m1[1] * m2[2] - m1[2] * m2[1],
+ m1[2] * m2[0] - m1[0] * m2[2],
+ m1[0] * m2[1] - m1[1] * m2[0]]
+
+def matrix_dot(m1, m2):
+ return m1[0] * m2[0] + m1[1] * m2[1] + m1[2] * m2[2]
+
+def matrix_magsq(m1):
+ return m1[0]**2 + m1[1]**2 + m1[2]**2
+
+def matrix_sub(m1, m2):
+ return [m1[0] - m2[0], m1[1] - m2[1], m1[2] - m2[2]]
+
+def matrix_mul(m1, s):
+ return [m1[0]*s, m1[1]*s, m1[2]*s]
diff --git a/klippy/mcu.py b/klippy/mcu.py
index 79537ed6..2c1e518b 100644
--- a/klippy/mcu.py
+++ b/klippy/mcu.py
@@ -69,6 +69,19 @@ class MCU_stepper:
clock = mcu_time * self._mcu_freq
return self.ffi_lib.stepcompress_push_factor(
self._stepqueue, steps, step_offset, clock, factor * self._mcu_freq)
+ def step_delta_const(self, mcu_time, dist, step_dist, start_pos
+ , closest_height2, height, movez_r, inv_velocity):
+ clock = mcu_time * self._mcu_freq
+ return self.ffi_lib.stepcompress_push_delta_const(
+ self._stepqueue, clock, dist, step_dist, start_pos
+ , closest_height2, height, movez_r, inv_velocity * self._mcu_freq)
+ def step_delta_accel(self, mcu_time, dist, step_dist, start_pos
+ , closest_height2, height, movez_r, accel_multiplier):
+ clock = mcu_time * self._mcu_freq
+ mcu_freq2 = self._mcu_freq**2
+ return self.ffi_lib.stepcompress_push_delta_accel(
+ self._stepqueue, clock, dist, step_dist, start_pos
+ , closest_height2, height, movez_r, accel_multiplier * mcu_freq2)
def get_errors(self):
return self.ffi_lib.stepcompress_get_errors(self._stepqueue)
diff --git a/klippy/stepcompress.c b/klippy/stepcompress.c
index c3f06761..992155d2 100644
--- a/klippy/stepcompress.c
+++ b/klippy/stepcompress.c
@@ -428,6 +428,79 @@ stepcompress_push_sqrt(struct stepcompress *sc, double steps, double step_offset
return sdir ? count : -count;
}
+// Schedule 'count' number of steps using the delta kinematic const speed
+int32_t
+stepcompress_push_delta_const(
+ struct stepcompress *sc, double clock_offset, double dist, double step_dist
+ , double start_pos, double closest_height2, double height, double movez_r
+ , double inv_velocity)
+{
+ // Calculate number of steps to take
+ double zdist = dist * movez_r;
+ int count = (safe_sqrt(closest_height2 - dist*dist + zdist*zdist)
+ - height - zdist) / step_dist + .5;
+ if (count <= 0 || count > 1000000) {
+ if (count)
+ fprintf(stderr, "ERROR: push_delta_const invalid count"
+ " %d %d %f %f %f %f %f %f %f %f\n"
+ , sc->oid, count, clock_offset, dist, step_dist, start_pos
+ , closest_height2, height, movez_r, inv_velocity);
+ return 0;
+ }
+ check_expand(sc, step_dist > 0., count);
+
+ // Calculate each step time
+ uint64_t *qn = sc->queue_next, *end = &qn[count];
+ clock_offset += 0.5;
+ height += .5 * step_dist;
+ while (qn < end) {
+ double zh = height*movez_r;
+ double v = safe_sqrt(closest_height2 - height*height + zh*zh);
+ double pos = start_pos + zh + (step_dist > 0. ? -v : v);
+ *qn++ = clock_offset + pos * inv_velocity;
+ height += step_dist;
+ }
+ sc->queue_next = qn;
+ return step_dist > 0. ? count : -count;
+}
+
+// Schedule 'count' number of steps using delta kinematic acceleration
+int32_t
+stepcompress_push_delta_accel(
+ struct stepcompress *sc, double clock_offset, double dist, double step_dist
+ , double start_pos, double closest_height2, double height, double movez_r
+ , double accel_multiplier)
+{
+ // Calculate number of steps to take
+ double zdist = dist * movez_r;
+ int count = (safe_sqrt(closest_height2 - dist*dist + zdist*zdist)
+ - height - zdist) / step_dist + .5;
+ if (count <= 0 || count > 1000000) {
+ if (count)
+ fprintf(stderr, "ERROR: push_delta_accel invalid count"
+ " %d %d %f %f %f %f %f %f %f %f\n"
+ , sc->oid, count, clock_offset, dist, step_dist, start_pos
+ , closest_height2, height, movez_r, accel_multiplier);
+ return 0;
+ }
+ check_expand(sc, step_dist > 0., count);
+
+ // Calculate each step time
+ uint64_t *qn = sc->queue_next, *end = &qn[count];
+ clock_offset += 0.5;
+ height += .5 * step_dist;
+ while (qn < end) {
+ double zh = height*movez_r;
+ double v = safe_sqrt(closest_height2 - height*height + zh*zh);
+ double pos = start_pos + zh + (step_dist > 0. ? -v : v);
+ v = safe_sqrt(pos * accel_multiplier);
+ *qn++ = clock_offset + (accel_multiplier >= 0. ? v : -v);
+ height += step_dist;
+ }
+ sc->queue_next = qn;
+ return step_dist > 0. ? count : -count;
+}
+
// Reset the internal state of the stepcompress object
void
stepcompress_reset(struct stepcompress *sc, uint64_t last_step_clock)
diff --git a/klippy/toolhead.py b/klippy/toolhead.py
index d57a22e5..91843805 100644
--- a/klippy/toolhead.py
+++ b/klippy/toolhead.py
@@ -4,7 +4,7 @@
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging, time
-import cartesian
+import cartesian, delta
EXTRUDE_DIFF_IGNORE = 1.02
@@ -159,7 +159,10 @@ class ToolHead:
self.printer = printer
self.reactor = printer.reactor
self.extruder = printer.objects.get('extruder')
- self.kin = cartesian.CartKinematics(printer, config)
+ kintypes = {'cartesian': cartesian.CartKinematics,
+ 'delta': delta.DeltaKinematics}
+ kin = config.get('kinematics', 'cartesian')
+ self.kin = kintypes[kin](printer, config)
self.max_speed, self.max_accel = self.kin.get_max_speed()
self.junction_deviation = config.getfloat('junction_deviation', 0.02)
self.move_queue = MoveQueue()