aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorTomasz Kramkowski <tk@the-tk.com>2018-04-20 22:18:45 +0200
committerTomasz Kramkowski <tk@the-tk.com>2018-04-20 22:18:45 +0200
commita53677673de504fe050fced7791b45d80e3fe77b (patch)
treeb22047d70b40156bece9489bd58db34f99e91209
parentfd56a839d33d8d33ff4722550f97465db56b379d (diff)
downloadfaqe-a53677673de504fe050fced7791b45d80e3fe77b.tar.gz
faqe-a53677673de504fe050fced7791b45d80e3fe77b.tar.xz
faqe-a53677673de504fe050fced7791b45d80e3fe77b.zip
Move linmath.h out of the project and into its own fork.
-rw-r--r--.gitignore1
-rw-r--r--Makefile4
-rw-r--r--linmath.h593
3 files changed, 4 insertions, 594 deletions
diff --git a/.gitignore b/.gitignore
index 76747f5..ad9f5de 100644
--- a/.gitignore
+++ b/.gitignore
@@ -8,6 +8,7 @@ faqe
tags
TAGS
+linmath.h
eprintf.h
eprintf.c
loadgl.h
diff --git a/Makefile b/Makefile
index fccbf40..004053e 100644
--- a/Makefile
+++ b/Makefile
@@ -5,6 +5,7 @@
PROG := faqe
EPRINTF_PATH ?= ../eprintf
+LINMATH_PATH ?= ../linmath
PKG_CONFIG ?= pkg-config
LN ?= ln -sf
@@ -20,11 +21,12 @@ all: $(PROG)
include assets.mk
include $(EPRINTF_PATH)/module.mk
+include $(LINMATH_PATH)/module.mk
$(PROG): $(OBJ)
faqe.o: assets.h
-deplinks: $(EPRINTF_FILES)
+deplinks: $(EPRINTF_FILES) $(LINMATH_FILES)
DEP := $(OBJ:.o=.d)
diff --git a/linmath.h b/linmath.h
deleted file mode 100644
index ffbe7cc..0000000
--- a/linmath.h
+++ /dev/null
@@ -1,593 +0,0 @@
-/*
- * Copyright (C) 2013 Wolfgang 'datenwolf' Draxinger <code@datenwolf.net>
- * Copyright (C) 2018 Tomasz Kramkowski <tk@the-tk.com>
- * SPDX-License-Identifier: WTFPL
- */
-#ifndef LINMATH_H
-#define LINMATH_H
-
-#include <math.h>
-
-typedef float lm_elem;
-#define LINMATH_H_DEFINE_VEC(n) \
-typedef lm_elem vec##n[n]; \
-static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \
-{ \
- for (int i = 0; i < n; ++i) \
- r[i] = a[i] + b[i]; \
-} \
-static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \
-{ \
- for (int i = 0; i < n; ++i) \
- r[i] = a[i] - b[i]; \
-} \
-static inline void vec##n##_scale(vec##n r, vec##n const v, lm_elem const s) \
-{ \
- for (int i = 0; i < n; ++i) \
- r[i] = v[i] * s; \
-} \
-static inline lm_elem vec##n##_mul_inner(vec##n const a, vec##n const b) \
-{ \
- lm_elem p = 0.0; \
- for (int i = 0; i < n; ++i) \
- p += b[i] * a[i]; \
- return p; \
-} \
-static inline lm_elem vec##n##_len(vec##n const v) \
-{ \
- return sqrtf(vec##n##_mul_inner(v, v)); \
-} \
-static inline void vec##n##_norm(vec##n r, vec##n const v) \
-{ \
- lm_elem k = 1.0 / vec##n##_len(v); \
- vec##n##_scale(r, v, k); \
-} \
-static inline void vec##n##_min(vec##n r, vec##n a, vec##n b) \
-{ \
- for (int i = 0; i < n; ++i) \
- r[i] = a[i] < b[i] ? a[i] : b[i]; \
-} \
-static inline void vec##n##_max(vec##n r, vec##n a, vec##n b) \
-{ \
- for (int i = 0; i < n; ++i) \
- r[i] = a[i] > b[i] ? a[i] : b[i]; \
-}
-
-LINMATH_H_DEFINE_VEC(2)
-LINMATH_H_DEFINE_VEC(3)
-LINMATH_H_DEFINE_VEC(4)
-
-static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b)
-{
- r[0] = a[1] * b[2] - a[2] * b[1];
- r[1] = a[2] * b[0] - a[0] * b[2];
- r[2] = a[0] * b[1] - a[1] * b[0];
-}
-
-static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
-{
- lm_elem p = 2.0f * vec3_mul_inner(v, n);
- for (int i = 0; i < 3; ++i)
- r[i] = v[i] - p * n[i];
-}
-
-static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
-{
- r[0] = a[1] * b[2] - a[2] * b[1];
- r[1] = a[2] * b[0] - a[0] * b[2];
- r[2] = a[0] * b[1] - a[1] * b[0];
- r[3] = 1.0f;
-}
-
-static inline void vec4_reflect(vec4 r, vec4 v, vec4 n)
-{
- lm_elem p = 2.0f * vec4_mul_inner(v, n);
- for (int i = 0; i < 4; ++i)
- r[i] = v[i] - p * n[i];
-}
-
-typedef vec4 mat4x4[4];
-static inline void mat4x4_identity(mat4x4 M)
-{
- for (int i = 0; i < 4; ++i)
- for (int j = 0; j < 4; ++j)
- M[i][j] = i == j ? 1.0f : 0.0f;
-}
-
-static inline void mat4x4_dup(mat4x4 M, mat4x4 N)
-{
- for (int i = 0; i < 4; ++i)
- for (int j = 0; j < 4; ++j)
- M[i][j] = N[i][j];
-}
-
-static inline void mat4x4_row(vec4 r, mat4x4 M, int i)
-{
- for (int k = 0; k < 4; ++k)
- r[k] = M[k][i];
-}
-
-static inline void mat4x4_col(vec4 r, mat4x4 M, int i)
-{
- for (int k = 0; k < 4; ++k)
- r[k] = M[i][k];
-}
-
-static inline void mat4x4_transpose(mat4x4 M, mat4x4 N)
-{
- for (int j = 0; j < 4; ++j)
- for (int i = 0; i < 4; ++i)
- M[i][j] = N[j][i];
-}
-
-static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b)
-{
- for (int i = 0; i < 4; ++i)
- vec4_add(M[i], a[i], b[i]);
-}
-
-static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b)
-{
- for (int i = 0; i < 4; ++i)
- vec4_sub(M[i], a[i], b[i]);
-}
-
-static inline void mat4x4_scale(mat4x4 M, mat4x4 a, lm_elem k)
-{
- for (int i = 0; i < 4; ++i)
- vec4_scale(M[i], a[i], k);
-}
-
-static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, lm_elem x, lm_elem y, lm_elem z)
-{
- vec4_scale(M[0], a[0], x);
- vec4_scale(M[1], a[1], y);
- vec4_scale(M[2], a[2], z);
- for (int i = 0; i < 4; ++i)
- M[3][i] = a[3][i];
-}
-
-static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
-{
- mat4x4 temp;
- for (int c = 0; c < 4; ++c) {
- for (int r = 0; r < 4; ++r) {
- temp[c][r] = 0.0f;
- for (int k = 0; k < 4; ++k)
- temp[c][r] += a[k][r] * b[c][k];
- }
- }
- mat4x4_dup(M, temp);
-}
-
-static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
-{
- for (int j = 0; j < 4; ++j) {
- r[j] = 0.0f;
- for (int i = 0; i < 4; ++i)
- r[j] += M[i][j] * v[i];
- }
-}
-
-static inline void mat4x4_translate(mat4x4 T, lm_elem x, lm_elem y, lm_elem z)
-{
- mat4x4_identity(T);
- T[3][0] = x;
- T[3][1] = y;
- T[3][2] = z;
-}
-
-static inline void mat4x4_translate_in_place(mat4x4 M, lm_elem x, lm_elem y, lm_elem z)
-{
- vec4 t = {x, y, z, 0};
- vec4 r;
- for (int i = 0; i < 4; ++i) {
- mat4x4_row(r, M, i);
- M[3][i] += vec4_mul_inner(r, t);
- }
-}
-
-static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b)
-{
- for (int i = 0; i < 4; ++i)
- for (int j = 0; j < 4; ++j)
- M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.0f;
-}
-
-static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, lm_elem x, lm_elem y, lm_elem z, lm_elem angle)
-{
- lm_elem s = sinf(angle);
- lm_elem c = cosf(angle);
- vec3 u = {x, y, z};
-
- if (vec3_len(u) <= 1e-4) {
- mat4x4_dup(R, M);
- return;
- }
-
- vec3_norm(u, u);
- mat4x4 T;
- mat4x4_from_vec3_mul_outer(T, u, u);
-
- mat4x4 S = {
- { 0, u[2], -u[1], 0 },
- { -u[2], 0, u[0], 0 },
- { u[1], -u[0], 0, 0 },
- { 0, 0, 0, 0 }
- };
- mat4x4_scale(S, S, s);
-
- mat4x4 C;
- mat4x4_identity(C);
- mat4x4_sub(C, C, T);
-
- mat4x4_scale(C, C, c);
-
- mat4x4_add(T, T, C);
- mat4x4_add(T, T, S);
-
- T[3][3] = 1.;
- mat4x4_mul(R, M, T);
-}
-
-static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, lm_elem angle)
-{
- lm_elem s = sinf(angle);
- lm_elem c = cosf(angle);
- mat4x4 R = {
- { 1.0f, 0.0f, 0.0f, 0.0f },
- { 0.0f, c, s, 0.0f },
- { 0.0f, -s, c, 0.0f },
- { 0.0f, 0.0f, 0.0f, 1.0f }
- };
- mat4x4_mul(Q, M, R);
-}
-
-static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, lm_elem angle)
-{
- lm_elem s = sinf(angle);
- lm_elem c = cosf(angle);
- mat4x4 R = {
- { c, 0.0f, s, 0.0f },
- { 0.0f, 1.0f, 0.0f, 0.0f },
- { -s, 0.0f, c, 0.0f },
- { 0.0f, 0.0f, 0.0f, 1.0f }
- };
- mat4x4_mul(Q, M, R);
-}
-
-static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, lm_elem angle)
-{
- lm_elem s = sinf(angle);
- lm_elem c = cosf(angle);
- mat4x4 R = {
- { c, s, 0.0f, 0.0f },
- { -s, c, 0.0f, 0.0f },
- { 0.0f, 0.0f, 1.0f, 0.0f },
- { 0.0f, 0.0f, 0.0f, 1.0f }
- };
- mat4x4_mul(Q, M, R);
-}
-
-static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
-{
- lm_elem s[6];
- lm_elem c[6];
- s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1];
- s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2];
- s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3];
- s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2];
- s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3];
- s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3];
-
- c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1];
- c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2];
- c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3];
- c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2];
- c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3];
- c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3];
-
- /* Assumes it is invertible */
- lm_elem idet = 1.0f / (s[0] * c[5] - s[1] * c[4]
- + s[2] * c[3] + s[3] * c[2]
- - s[4] * c[1] + s[5] * c[0]);
-
- T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
- T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
- T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
- T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
-
- T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
- T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
- T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
- T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
-
- T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
- T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
- T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
- T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
-
- T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
- T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
- T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
- T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
-}
-
-static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
-{
- mat4x4_dup(R, M);
- lm_elem s;
- vec3 h;
-
- vec3_norm(R[2], R[2]);
-
- s = vec3_mul_inner(R[1], R[2]);
- vec3_scale(h, R[2], s);
- vec3_sub(R[1], R[1], h);
- vec3_norm(R[2], R[2]);
-
- s = vec3_mul_inner(R[1], R[2]);
- vec3_scale(h, R[2], s);
- vec3_sub(R[1], R[1], h);
- vec3_norm(R[1], R[1]);
-
- s = vec3_mul_inner(R[0], R[1]);
- vec3_scale(h, R[1], s);
- vec3_sub(R[0], R[0], h);
- vec3_norm(R[0], R[0]);
-}
-
-static inline void mat4x4_frustum(mat4x4 M, lm_elem l, lm_elem r, lm_elem b, lm_elem t, lm_elem n, lm_elem f)
-{
- M[0][0] = 2.0f * n/(r-l);
- M[0][1] = M[0][2] = M[0][3] = 0.0f;
-
- M[1][1] = 2.0 * n/(t-b);
- M[1][0] = M[1][2] = M[1][3] = 0.0f;
-
- M[2][0] = (r+l)/(r-l);
- M[2][1] = (t+b)/(t-b);
- M[2][2] = -(f+n)/(f-n);
- M[2][3] = -1.0f;
-
- M[3][2] = -2.0f * (f * n)/(f-n);
- M[3][0] = M[3][1] = M[3][3] = 0.0f;
-}
-
-static inline void mat4x4_ortho(mat4x4 M, lm_elem l, lm_elem r, lm_elem b, lm_elem t, lm_elem n, lm_elem f)
-{
- M[0][0] = 2.0f/(r-l);
- M[0][1] = M[0][2] = M[0][3] = 0.0f;
-
- M[1][1] = 2.0f/(t-b);
- M[1][0] = M[1][2] = M[1][3] = 0.0f;
-
- M[2][2] = -2.0f/(f-n);
- M[2][0] = M[2][1] = M[2][3] = 0.0f;
-
- M[3][0] = -(r+l)/(r-l);
- M[3][1] = -(t+b)/(t-b);
- M[3][2] = -(f+n)/(f-n);
- M[3][3] = 1.0f;
-}
-
-static inline void mat4x4_perspective(mat4x4 m, lm_elem y_fov, lm_elem aspect, lm_elem n, lm_elem f)
-{
- lm_elem const a = 1.0f / tan(y_fov / 2.0f);
-
- m[0][0] = a / aspect;
- m[0][1] = 0.0f;
- m[0][2] = 0.0f;
- m[0][3] = 0.0f;
-
- m[1][0] = 0.0f;
- m[1][1] = a;
- m[1][2] = 0.0f;
- m[1][3] = 0.0f;
-
- m[2][0] = 0.0f;
- m[2][1] = 0.0f;
- m[2][2] = -((f + n) / (f - n));
- m[2][3] = -1.0f;
-
- m[3][0] = 0.0f;
- m[3][1] = 0.0f;
- m[3][2] = -((2.0f * f * n) / (f - n));
- m[3][3] = 0.0f;
-}
-
-static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
-{
- /* Adapted from Android's OpenGL Matrix.java. */
- /* See the OpenGL GLUT documentation for gluLookAt for a description */
- /* of the algorithm. We implement it in a straightforward way: */
-
- /* TODO: The negation of of can be spared by swapping the order of
- * operands in the following cross products in the right way. */
- vec3 f;
- vec3_sub(f, center, eye);
- vec3_norm(f, f);
-
- vec3 s;
- vec3_mul_cross(s, f, up);
- vec3_norm(s, s);
-
- vec3 t;
- vec3_mul_cross(t, s, f);
-
- m[0][0] = s[0];
- m[0][1] = t[0];
- m[0][2] = -f[0];
- m[0][3] = 0.0f;
-
- m[1][0] = s[1];
- m[1][1] = t[1];
- m[1][2] = -f[1];
- m[1][3] = 0.0f;
-
- m[2][0] = s[2];
- m[2][1] = t[2];
- m[2][2] = -f[2];
- m[2][3] = 0.0f;
-
- m[3][0] = 0.0f;
- m[3][1] = 0.0f;
- m[3][2] = 0.0f;
- m[3][3] = 1.0f;
-
- mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
-}
-
-typedef lm_elem quat[4];
-static inline void quat_identity(quat q)
-{
- q[0] = q[1] = q[2] = 0.0f;
- q[3] = 1.0f;
-}
-
-static inline void quat_add(quat r, quat a, quat b)
-{
- for (int i = 0; i < 4; ++i)
- r[i] = a[i] + b[i];
-}
-
-static inline void quat_sub(quat r, quat a, quat b)
-{
- for (int i = 0; i < 4; ++i)
- r[i] = a[i] - b[i];
-}
-
-static inline void quat_mul(quat r, quat p, quat q)
-{
- vec3 w;
- vec3_mul_cross(r, p, q);
- vec3_scale(w, p, q[3]);
- vec3_add(r, r, w);
- vec3_scale(w, q, p[3]);
- vec3_add(r, r, w);
- r[3] = p[3]*q[3] - vec3_mul_inner(p, q);
-}
-
-static inline void quat_scale(quat r, quat v, lm_elem s)
-{
- for (int i = 0; i < 4; ++i)
- r[i] = v[i] * s;
-}
-
-static inline lm_elem quat_inner_product(quat a, quat b)
-{
- lm_elem p = 0.0f;
- for (int i = 0; i < 4; ++i)
- p += b[i]*a[i];
- return p;
-}
-
-static inline void quat_conj(quat r, quat q)
-{
- for (int i = 0; i < 3; ++i)
- r[i] = -q[i];
- r[3] = q[3];
-}
-
-static inline void quat_rotate(quat r, lm_elem angle, vec3 axis) {
- vec3 v;
- vec3_scale(v, axis, sinf(angle / 2));
- for (int i = 0; i < 3; ++i)
- r[i] = v[i];
- r[3] = cosf(angle / 2);
-}
-
-#define quat_norm vec4_norm
-static inline void quat_mul_vec3(vec3 r, quat q, vec3 v)
-{
-/*
- * Method by Fabian 'ryg' Giessen (of Farbrausch)
- * t = 2 * cross(q.xyz, v)
- * v' = v + q.w * t + cross(q.xyz, t)
- */
- vec3 t;
- vec3 q_xyz = { q[0], q[1], q[2] };
- vec3 u = { q[0], q[1], q[2] };
-
- vec3_mul_cross(t, q_xyz, v);
- vec3_scale(t, t, 2);
-
- vec3_mul_cross(u, q_xyz, t);
- vec3_scale(t, t, q[3]);
-
- vec3_add(r, v, t);
- vec3_add(r, r, u);
-}
-
-static inline void mat4x4_from_quat(mat4x4 M, quat q)
-{
- lm_elem a = q[3];
- lm_elem b = q[0];
- lm_elem c = q[1];
- lm_elem d = q[2];
- lm_elem a2 = a * a;
- lm_elem b2 = b * b;
- lm_elem c2 = c * c;
- lm_elem d2 = d * d;
-
- M[0][0] = a2 + b2 - c2 - d2;
- M[0][1] = 2.0f * (b * c + a * d);
- M[0][2] = 2.0f * (b * d - a * c);
- M[0][3] = 0.0f;
-
- M[1][0] = 2 * (b * c - a * d);
- M[1][1] = a2 - b2 + c2 - d2;
- M[1][2] = 2.0f * (c * d + a * b);
- M[1][3] = 0.0f;
-
- M[2][0] = 2.0f * (b * d + a * c);
- M[2][1] = 2.0f * (c * d - a * b);
- M[2][2] = a2 - b2 - c2 + d2;
- M[2][3] = 0.0f;
-
- M[3][0] = M[3][1] = M[3][2] = 0.0f;
- M[3][3] = 1.0f;
-}
-
-static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
-{
-/* XXX: The way this is written only works for othogonal matrices. */
-/* TODO: Take care of non-orthogonal case. */
- quat_mul_vec3(R[0], q, M[0]);
- quat_mul_vec3(R[1], q, M[1]);
- quat_mul_vec3(R[2], q, M[2]);
-
- R[3][0] = R[3][1] = R[3][2] = 0.0f;
- R[3][3] = 1.0f;
-}
-
-static inline void quat_from_mat4x4(quat q, mat4x4 M)
-{
- lm_elem r = 0.0f;
-
- int perm[] = { 0, 1, 2, 0, 1 };
- int *p = perm;
-
- for (int i = 0; i < 3; i++) {
- lm_elem m = M[i][i];
- if (m < r)
- continue;
- m = r;
- p = &perm[i];
- }
-
- r = sqrtf(1.0f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]);
-
- if (r < 1e-6) {
- q[0] = 1.0f;
- q[1] = q[2] = q[3] = 0.0f;
- return;
- }
-
- q[0] = r/2.0f;
- q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.0f * r);
- q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.0f * r);
- q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.0f * r);
-}
-
-#endif // LINMATH_H