diff options
author | Tomasz Kramkowski <tk@the-tk.com> | 2018-04-20 22:18:45 +0200 |
---|---|---|
committer | Tomasz Kramkowski <tk@the-tk.com> | 2018-04-20 22:18:45 +0200 |
commit | a53677673de504fe050fced7791b45d80e3fe77b (patch) | |
tree | b22047d70b40156bece9489bd58db34f99e91209 | |
parent | fd56a839d33d8d33ff4722550f97465db56b379d (diff) | |
download | faqe-a53677673de504fe050fced7791b45d80e3fe77b.tar.gz faqe-a53677673de504fe050fced7791b45d80e3fe77b.tar.xz faqe-a53677673de504fe050fced7791b45d80e3fe77b.zip |
Move linmath.h out of the project and into its own fork.
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | Makefile | 4 | ||||
-rw-r--r-- | linmath.h | 593 |
3 files changed, 4 insertions, 594 deletions
@@ -8,6 +8,7 @@ faqe tags TAGS +linmath.h eprintf.h eprintf.c loadgl.h @@ -5,6 +5,7 @@ PROG := faqe EPRINTF_PATH ?= ../eprintf +LINMATH_PATH ?= ../linmath PKG_CONFIG ?= pkg-config LN ?= ln -sf @@ -20,11 +21,12 @@ all: $(PROG) include assets.mk include $(EPRINTF_PATH)/module.mk +include $(LINMATH_PATH)/module.mk $(PROG): $(OBJ) faqe.o: assets.h -deplinks: $(EPRINTF_FILES) +deplinks: $(EPRINTF_FILES) $(LINMATH_FILES) DEP := $(OBJ:.o=.d) diff --git a/linmath.h b/linmath.h deleted file mode 100644 index ffbe7cc..0000000 --- a/linmath.h +++ /dev/null @@ -1,593 +0,0 @@ -/* - * Copyright (C) 2013 Wolfgang 'datenwolf' Draxinger <code@datenwolf.net> - * Copyright (C) 2018 Tomasz Kramkowski <tk@the-tk.com> - * SPDX-License-Identifier: WTFPL - */ -#ifndef LINMATH_H -#define LINMATH_H - -#include <math.h> - -typedef float lm_elem; -#define LINMATH_H_DEFINE_VEC(n) \ -typedef lm_elem vec##n[n]; \ -static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ -{ \ - for (int i = 0; i < n; ++i) \ - r[i] = a[i] + b[i]; \ -} \ -static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \ -{ \ - for (int i = 0; i < n; ++i) \ - r[i] = a[i] - b[i]; \ -} \ -static inline void vec##n##_scale(vec##n r, vec##n const v, lm_elem const s) \ -{ \ - for (int i = 0; i < n; ++i) \ - r[i] = v[i] * s; \ -} \ -static inline lm_elem vec##n##_mul_inner(vec##n const a, vec##n const b) \ -{ \ - lm_elem p = 0.0; \ - for (int i = 0; i < n; ++i) \ - p += b[i] * a[i]; \ - return p; \ -} \ -static inline lm_elem vec##n##_len(vec##n const v) \ -{ \ - return sqrtf(vec##n##_mul_inner(v, v)); \ -} \ -static inline void vec##n##_norm(vec##n r, vec##n const v) \ -{ \ - lm_elem k = 1.0 / vec##n##_len(v); \ - vec##n##_scale(r, v, k); \ -} \ -static inline void vec##n##_min(vec##n r, vec##n a, vec##n b) \ -{ \ - for (int i = 0; i < n; ++i) \ - r[i] = a[i] < b[i] ? a[i] : b[i]; \ -} \ -static inline void vec##n##_max(vec##n r, vec##n a, vec##n b) \ -{ \ - for (int i = 0; i < n; ++i) \ - r[i] = a[i] > b[i] ? a[i] : b[i]; \ -} - -LINMATH_H_DEFINE_VEC(2) -LINMATH_H_DEFINE_VEC(3) -LINMATH_H_DEFINE_VEC(4) - -static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) -{ - r[0] = a[1] * b[2] - a[2] * b[1]; - r[1] = a[2] * b[0] - a[0] * b[2]; - r[2] = a[0] * b[1] - a[1] * b[0]; -} - -static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) -{ - lm_elem p = 2.0f * vec3_mul_inner(v, n); - for (int i = 0; i < 3; ++i) - r[i] = v[i] - p * n[i]; -} - -static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) -{ - r[0] = a[1] * b[2] - a[2] * b[1]; - r[1] = a[2] * b[0] - a[0] * b[2]; - r[2] = a[0] * b[1] - a[1] * b[0]; - r[3] = 1.0f; -} - -static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) -{ - lm_elem p = 2.0f * vec4_mul_inner(v, n); - for (int i = 0; i < 4; ++i) - r[i] = v[i] - p * n[i]; -} - -typedef vec4 mat4x4[4]; -static inline void mat4x4_identity(mat4x4 M) -{ - for (int i = 0; i < 4; ++i) - for (int j = 0; j < 4; ++j) - M[i][j] = i == j ? 1.0f : 0.0f; -} - -static inline void mat4x4_dup(mat4x4 M, mat4x4 N) -{ - for (int i = 0; i < 4; ++i) - for (int j = 0; j < 4; ++j) - M[i][j] = N[i][j]; -} - -static inline void mat4x4_row(vec4 r, mat4x4 M, int i) -{ - for (int k = 0; k < 4; ++k) - r[k] = M[k][i]; -} - -static inline void mat4x4_col(vec4 r, mat4x4 M, int i) -{ - for (int k = 0; k < 4; ++k) - r[k] = M[i][k]; -} - -static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) -{ - for (int j = 0; j < 4; ++j) - for (int i = 0; i < 4; ++i) - M[i][j] = N[j][i]; -} - -static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) -{ - for (int i = 0; i < 4; ++i) - vec4_add(M[i], a[i], b[i]); -} - -static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) -{ - for (int i = 0; i < 4; ++i) - vec4_sub(M[i], a[i], b[i]); -} - -static inline void mat4x4_scale(mat4x4 M, mat4x4 a, lm_elem k) -{ - for (int i = 0; i < 4; ++i) - vec4_scale(M[i], a[i], k); -} - -static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, lm_elem x, lm_elem y, lm_elem z) -{ - vec4_scale(M[0], a[0], x); - vec4_scale(M[1], a[1], y); - vec4_scale(M[2], a[2], z); - for (int i = 0; i < 4; ++i) - M[3][i] = a[3][i]; -} - -static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) -{ - mat4x4 temp; - for (int c = 0; c < 4; ++c) { - for (int r = 0; r < 4; ++r) { - temp[c][r] = 0.0f; - for (int k = 0; k < 4; ++k) - temp[c][r] += a[k][r] * b[c][k]; - } - } - mat4x4_dup(M, temp); -} - -static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) -{ - for (int j = 0; j < 4; ++j) { - r[j] = 0.0f; - for (int i = 0; i < 4; ++i) - r[j] += M[i][j] * v[i]; - } -} - -static inline void mat4x4_translate(mat4x4 T, lm_elem x, lm_elem y, lm_elem z) -{ - mat4x4_identity(T); - T[3][0] = x; - T[3][1] = y; - T[3][2] = z; -} - -static inline void mat4x4_translate_in_place(mat4x4 M, lm_elem x, lm_elem y, lm_elem z) -{ - vec4 t = {x, y, z, 0}; - vec4 r; - for (int i = 0; i < 4; ++i) { - mat4x4_row(r, M, i); - M[3][i] += vec4_mul_inner(r, t); - } -} - -static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) -{ - for (int i = 0; i < 4; ++i) - for (int j = 0; j < 4; ++j) - M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.0f; -} - -static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, lm_elem x, lm_elem y, lm_elem z, lm_elem angle) -{ - lm_elem s = sinf(angle); - lm_elem c = cosf(angle); - vec3 u = {x, y, z}; - - if (vec3_len(u) <= 1e-4) { - mat4x4_dup(R, M); - return; - } - - vec3_norm(u, u); - mat4x4 T; - mat4x4_from_vec3_mul_outer(T, u, u); - - mat4x4 S = { - { 0, u[2], -u[1], 0 }, - { -u[2], 0, u[0], 0 }, - { u[1], -u[0], 0, 0 }, - { 0, 0, 0, 0 } - }; - mat4x4_scale(S, S, s); - - mat4x4 C; - mat4x4_identity(C); - mat4x4_sub(C, C, T); - - mat4x4_scale(C, C, c); - - mat4x4_add(T, T, C); - mat4x4_add(T, T, S); - - T[3][3] = 1.; - mat4x4_mul(R, M, T); -} - -static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, lm_elem angle) -{ - lm_elem s = sinf(angle); - lm_elem c = cosf(angle); - mat4x4 R = { - { 1.0f, 0.0f, 0.0f, 0.0f }, - { 0.0f, c, s, 0.0f }, - { 0.0f, -s, c, 0.0f }, - { 0.0f, 0.0f, 0.0f, 1.0f } - }; - mat4x4_mul(Q, M, R); -} - -static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, lm_elem angle) -{ - lm_elem s = sinf(angle); - lm_elem c = cosf(angle); - mat4x4 R = { - { c, 0.0f, s, 0.0f }, - { 0.0f, 1.0f, 0.0f, 0.0f }, - { -s, 0.0f, c, 0.0f }, - { 0.0f, 0.0f, 0.0f, 1.0f } - }; - mat4x4_mul(Q, M, R); -} - -static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, lm_elem angle) -{ - lm_elem s = sinf(angle); - lm_elem c = cosf(angle); - mat4x4 R = { - { c, s, 0.0f, 0.0f }, - { -s, c, 0.0f, 0.0f }, - { 0.0f, 0.0f, 1.0f, 0.0f }, - { 0.0f, 0.0f, 0.0f, 1.0f } - }; - mat4x4_mul(Q, M, R); -} - -static inline void mat4x4_invert(mat4x4 T, mat4x4 M) -{ - lm_elem s[6]; - lm_elem c[6]; - s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1]; - s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2]; - s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3]; - s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2]; - s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3]; - s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3]; - - c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1]; - c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2]; - c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3]; - c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2]; - c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3]; - c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3]; - - /* Assumes it is invertible */ - lm_elem idet = 1.0f / (s[0] * c[5] - s[1] * c[4] - + s[2] * c[3] + s[3] * c[2] - - s[4] * c[1] + s[5] * c[0]); - - T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; - T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; - T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; - T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; - - T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; - T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; - T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; - T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; - - T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; - T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; - T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; - T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; - - T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; - T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; - T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; - T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; -} - -static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) -{ - mat4x4_dup(R, M); - lm_elem s; - vec3 h; - - vec3_norm(R[2], R[2]); - - s = vec3_mul_inner(R[1], R[2]); - vec3_scale(h, R[2], s); - vec3_sub(R[1], R[1], h); - vec3_norm(R[2], R[2]); - - s = vec3_mul_inner(R[1], R[2]); - vec3_scale(h, R[2], s); - vec3_sub(R[1], R[1], h); - vec3_norm(R[1], R[1]); - - s = vec3_mul_inner(R[0], R[1]); - vec3_scale(h, R[1], s); - vec3_sub(R[0], R[0], h); - vec3_norm(R[0], R[0]); -} - -static inline void mat4x4_frustum(mat4x4 M, lm_elem l, lm_elem r, lm_elem b, lm_elem t, lm_elem n, lm_elem f) -{ - M[0][0] = 2.0f * n/(r-l); - M[0][1] = M[0][2] = M[0][3] = 0.0f; - - M[1][1] = 2.0 * n/(t-b); - M[1][0] = M[1][2] = M[1][3] = 0.0f; - - M[2][0] = (r+l)/(r-l); - M[2][1] = (t+b)/(t-b); - M[2][2] = -(f+n)/(f-n); - M[2][3] = -1.0f; - - M[3][2] = -2.0f * (f * n)/(f-n); - M[3][0] = M[3][1] = M[3][3] = 0.0f; -} - -static inline void mat4x4_ortho(mat4x4 M, lm_elem l, lm_elem r, lm_elem b, lm_elem t, lm_elem n, lm_elem f) -{ - M[0][0] = 2.0f/(r-l); - M[0][1] = M[0][2] = M[0][3] = 0.0f; - - M[1][1] = 2.0f/(t-b); - M[1][0] = M[1][2] = M[1][3] = 0.0f; - - M[2][2] = -2.0f/(f-n); - M[2][0] = M[2][1] = M[2][3] = 0.0f; - - M[3][0] = -(r+l)/(r-l); - M[3][1] = -(t+b)/(t-b); - M[3][2] = -(f+n)/(f-n); - M[3][3] = 1.0f; -} - -static inline void mat4x4_perspective(mat4x4 m, lm_elem y_fov, lm_elem aspect, lm_elem n, lm_elem f) -{ - lm_elem const a = 1.0f / tan(y_fov / 2.0f); - - m[0][0] = a / aspect; - m[0][1] = 0.0f; - m[0][2] = 0.0f; - m[0][3] = 0.0f; - - m[1][0] = 0.0f; - m[1][1] = a; - m[1][2] = 0.0f; - m[1][3] = 0.0f; - - m[2][0] = 0.0f; - m[2][1] = 0.0f; - m[2][2] = -((f + n) / (f - n)); - m[2][3] = -1.0f; - - m[3][0] = 0.0f; - m[3][1] = 0.0f; - m[3][2] = -((2.0f * f * n) / (f - n)); - m[3][3] = 0.0f; -} - -static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) -{ - /* Adapted from Android's OpenGL Matrix.java. */ - /* See the OpenGL GLUT documentation for gluLookAt for a description */ - /* of the algorithm. We implement it in a straightforward way: */ - - /* TODO: The negation of of can be spared by swapping the order of - * operands in the following cross products in the right way. */ - vec3 f; - vec3_sub(f, center, eye); - vec3_norm(f, f); - - vec3 s; - vec3_mul_cross(s, f, up); - vec3_norm(s, s); - - vec3 t; - vec3_mul_cross(t, s, f); - - m[0][0] = s[0]; - m[0][1] = t[0]; - m[0][2] = -f[0]; - m[0][3] = 0.0f; - - m[1][0] = s[1]; - m[1][1] = t[1]; - m[1][2] = -f[1]; - m[1][3] = 0.0f; - - m[2][0] = s[2]; - m[2][1] = t[2]; - m[2][2] = -f[2]; - m[2][3] = 0.0f; - - m[3][0] = 0.0f; - m[3][1] = 0.0f; - m[3][2] = 0.0f; - m[3][3] = 1.0f; - - mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); -} - -typedef lm_elem quat[4]; -static inline void quat_identity(quat q) -{ - q[0] = q[1] = q[2] = 0.0f; - q[3] = 1.0f; -} - -static inline void quat_add(quat r, quat a, quat b) -{ - for (int i = 0; i < 4; ++i) - r[i] = a[i] + b[i]; -} - -static inline void quat_sub(quat r, quat a, quat b) -{ - for (int i = 0; i < 4; ++i) - r[i] = a[i] - b[i]; -} - -static inline void quat_mul(quat r, quat p, quat q) -{ - vec3 w; - vec3_mul_cross(r, p, q); - vec3_scale(w, p, q[3]); - vec3_add(r, r, w); - vec3_scale(w, q, p[3]); - vec3_add(r, r, w); - r[3] = p[3]*q[3] - vec3_mul_inner(p, q); -} - -static inline void quat_scale(quat r, quat v, lm_elem s) -{ - for (int i = 0; i < 4; ++i) - r[i] = v[i] * s; -} - -static inline lm_elem quat_inner_product(quat a, quat b) -{ - lm_elem p = 0.0f; - for (int i = 0; i < 4; ++i) - p += b[i]*a[i]; - return p; -} - -static inline void quat_conj(quat r, quat q) -{ - for (int i = 0; i < 3; ++i) - r[i] = -q[i]; - r[3] = q[3]; -} - -static inline void quat_rotate(quat r, lm_elem angle, vec3 axis) { - vec3 v; - vec3_scale(v, axis, sinf(angle / 2)); - for (int i = 0; i < 3; ++i) - r[i] = v[i]; - r[3] = cosf(angle / 2); -} - -#define quat_norm vec4_norm -static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) -{ -/* - * Method by Fabian 'ryg' Giessen (of Farbrausch) - * t = 2 * cross(q.xyz, v) - * v' = v + q.w * t + cross(q.xyz, t) - */ - vec3 t; - vec3 q_xyz = { q[0], q[1], q[2] }; - vec3 u = { q[0], q[1], q[2] }; - - vec3_mul_cross(t, q_xyz, v); - vec3_scale(t, t, 2); - - vec3_mul_cross(u, q_xyz, t); - vec3_scale(t, t, q[3]); - - vec3_add(r, v, t); - vec3_add(r, r, u); -} - -static inline void mat4x4_from_quat(mat4x4 M, quat q) -{ - lm_elem a = q[3]; - lm_elem b = q[0]; - lm_elem c = q[1]; - lm_elem d = q[2]; - lm_elem a2 = a * a; - lm_elem b2 = b * b; - lm_elem c2 = c * c; - lm_elem d2 = d * d; - - M[0][0] = a2 + b2 - c2 - d2; - M[0][1] = 2.0f * (b * c + a * d); - M[0][2] = 2.0f * (b * d - a * c); - M[0][3] = 0.0f; - - M[1][0] = 2 * (b * c - a * d); - M[1][1] = a2 - b2 + c2 - d2; - M[1][2] = 2.0f * (c * d + a * b); - M[1][3] = 0.0f; - - M[2][0] = 2.0f * (b * d + a * c); - M[2][1] = 2.0f * (c * d - a * b); - M[2][2] = a2 - b2 - c2 + d2; - M[2][3] = 0.0f; - - M[3][0] = M[3][1] = M[3][2] = 0.0f; - M[3][3] = 1.0f; -} - -static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) -{ -/* XXX: The way this is written only works for othogonal matrices. */ -/* TODO: Take care of non-orthogonal case. */ - quat_mul_vec3(R[0], q, M[0]); - quat_mul_vec3(R[1], q, M[1]); - quat_mul_vec3(R[2], q, M[2]); - - R[3][0] = R[3][1] = R[3][2] = 0.0f; - R[3][3] = 1.0f; -} - -static inline void quat_from_mat4x4(quat q, mat4x4 M) -{ - lm_elem r = 0.0f; - - int perm[] = { 0, 1, 2, 0, 1 }; - int *p = perm; - - for (int i = 0; i < 3; i++) { - lm_elem m = M[i][i]; - if (m < r) - continue; - m = r; - p = &perm[i]; - } - - r = sqrtf(1.0f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]); - - if (r < 1e-6) { - q[0] = 1.0f; - q[1] = q[2] = q[3] = 0.0f; - return; - } - - q[0] = r/2.0f; - q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.0f * r); - q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.0f * r); - q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.0f * r); -} - -#endif // LINMATH_H |