aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorTomasz Kramkowski <tk@the-tk.com>2018-04-20 22:09:26 +0200
committerTomasz Kramkowski <tk@the-tk.com>2018-04-20 22:09:26 +0200
commite90d1c2e8fabaed7a608c6a65dc3e2ad84e24af7 (patch)
treeb4c52caca509c4b3c8bcfa900f0506f06dc97b96
parent057dd680a1e809516d2a53286112a74eeef54f62 (diff)
downloadlinmath-e90d1c2e8fabaed7a608c6a65dc3e2ad84e24af7.tar.gz
linmath-e90d1c2e8fabaed7a608c6a65dc3e2ad84e24af7.tar.xz
linmath-e90d1c2e8fabaed7a608c6a65dc3e2ad84e24af7.zip
Refactor linmath.h for use in faqe.
-rw-r--r--linmath.h511
1 files changed, 262 insertions, 249 deletions
diff --git a/linmath.h b/linmath.h
index c1c3ab5..ffbe7cc 100644
--- a/linmath.h
+++ b/linmath.h
@@ -1,56 +1,56 @@
+/*
+ * Copyright (C) 2013 Wolfgang 'datenwolf' Draxinger <code@datenwolf.net>
+ * Copyright (C) 2018 Tomasz Kramkowski <tk@the-tk.com>
+ * SPDX-License-Identifier: WTFPL
+ */
#ifndef LINMATH_H
#define LINMATH_H
#include <math.h>
+typedef float lm_elem;
#define LINMATH_H_DEFINE_VEC(n) \
-typedef float vec##n[n]; \
+typedef lm_elem vec##n[n]; \
static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \
{ \
- int i; \
- for(i=0; i<n; ++i) \
+ for (int i = 0; i < n; ++i) \
r[i] = a[i] + b[i]; \
} \
static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \
{ \
- int i; \
- for(i=0; i<n; ++i) \
+ for (int i = 0; i < n; ++i) \
r[i] = a[i] - b[i]; \
} \
-static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) \
+static inline void vec##n##_scale(vec##n r, vec##n const v, lm_elem const s) \
{ \
- int i; \
- for(i=0; i<n; ++i) \
+ for (int i = 0; i < n; ++i) \
r[i] = v[i] * s; \
} \
-static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \
+static inline lm_elem vec##n##_mul_inner(vec##n const a, vec##n const b) \
{ \
- float p = 0.; \
- int i; \
- for(i=0; i<n; ++i) \
- p += b[i]*a[i]; \
+ lm_elem p = 0.0; \
+ for (int i = 0; i < n; ++i) \
+ p += b[i] * a[i]; \
return p; \
} \
-static inline float vec##n##_len(vec##n const v) \
+static inline lm_elem vec##n##_len(vec##n const v) \
{ \
- return sqrtf(vec##n##_mul_inner(v,v)); \
+ return sqrtf(vec##n##_mul_inner(v, v)); \
} \
static inline void vec##n##_norm(vec##n r, vec##n const v) \
{ \
- float k = 1.0 / vec##n##_len(v); \
+ lm_elem k = 1.0 / vec##n##_len(v); \
vec##n##_scale(r, v, k); \
} \
static inline void vec##n##_min(vec##n r, vec##n a, vec##n b) \
{ \
- int i; \
- for(i=0; i<n; ++i) \
- r[i] = a[i]<b[i] ? a[i] : b[i]; \
+ for (int i = 0; i < n; ++i) \
+ r[i] = a[i] < b[i] ? a[i] : b[i]; \
} \
static inline void vec##n##_max(vec##n r, vec##n a, vec##n b) \
{ \
- int i; \
- for(i=0; i<n; ++i) \
- r[i] = a[i]>b[i] ? a[i] : b[i]; \
+ for (int i = 0; i < n; ++i) \
+ r[i] = a[i] > b[i] ? a[i] : b[i]; \
}
LINMATH_H_DEFINE_VEC(2)
@@ -59,231 +59,239 @@ LINMATH_H_DEFINE_VEC(4)
static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b)
{
- r[0] = a[1]*b[2] - a[2]*b[1];
- r[1] = a[2]*b[0] - a[0]*b[2];
- r[2] = a[0]*b[1] - a[1]*b[0];
+ r[0] = a[1] * b[2] - a[2] * b[1];
+ r[1] = a[2] * b[0] - a[0] * b[2];
+ r[2] = a[0] * b[1] - a[1] * b[0];
}
static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
{
- float p = 2.f*vec3_mul_inner(v, n);
- int i;
- for(i=0;i<3;++i)
- r[i] = v[i] - p*n[i];
+ lm_elem p = 2.0f * vec3_mul_inner(v, n);
+ for (int i = 0; i < 3; ++i)
+ r[i] = v[i] - p * n[i];
}
static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
{
- r[0] = a[1]*b[2] - a[2]*b[1];
- r[1] = a[2]*b[0] - a[0]*b[2];
- r[2] = a[0]*b[1] - a[1]*b[0];
- r[3] = 1.f;
+ r[0] = a[1] * b[2] - a[2] * b[1];
+ r[1] = a[2] * b[0] - a[0] * b[2];
+ r[2] = a[0] * b[1] - a[1] * b[0];
+ r[3] = 1.0f;
}
static inline void vec4_reflect(vec4 r, vec4 v, vec4 n)
{
- float p = 2.f*vec4_mul_inner(v, n);
- int i;
- for(i=0;i<4;++i)
- r[i] = v[i] - p*n[i];
+ lm_elem p = 2.0f * vec4_mul_inner(v, n);
+ for (int i = 0; i < 4; ++i)
+ r[i] = v[i] - p * n[i];
}
typedef vec4 mat4x4[4];
static inline void mat4x4_identity(mat4x4 M)
{
- int i, j;
- for(i=0; i<4; ++i)
- for(j=0; j<4; ++j)
- M[i][j] = i==j ? 1.f : 0.f;
+ for (int i = 0; i < 4; ++i)
+ for (int j = 0; j < 4; ++j)
+ M[i][j] = i == j ? 1.0f : 0.0f;
}
+
static inline void mat4x4_dup(mat4x4 M, mat4x4 N)
{
- int i, j;
- for(i=0; i<4; ++i)
- for(j=0; j<4; ++j)
+ for (int i = 0; i < 4; ++i)
+ for (int j = 0; j < 4; ++j)
M[i][j] = N[i][j];
}
+
static inline void mat4x4_row(vec4 r, mat4x4 M, int i)
{
- int k;
- for(k=0; k<4; ++k)
+ for (int k = 0; k < 4; ++k)
r[k] = M[k][i];
}
+
static inline void mat4x4_col(vec4 r, mat4x4 M, int i)
{
- int k;
- for(k=0; k<4; ++k)
+ for (int k = 0; k < 4; ++k)
r[k] = M[i][k];
}
+
static inline void mat4x4_transpose(mat4x4 M, mat4x4 N)
{
- int i, j;
- for(j=0; j<4; ++j)
- for(i=0; i<4; ++i)
+ for (int j = 0; j < 4; ++j)
+ for (int i = 0; i < 4; ++i)
M[i][j] = N[j][i];
}
+
static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b)
{
- int i;
- for(i=0; i<4; ++i)
+ for (int i = 0; i < 4; ++i)
vec4_add(M[i], a[i], b[i]);
}
+
static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b)
{
- int i;
- for(i=0; i<4; ++i)
+ for (int i = 0; i < 4; ++i)
vec4_sub(M[i], a[i], b[i]);
}
-static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k)
+
+static inline void mat4x4_scale(mat4x4 M, mat4x4 a, lm_elem k)
{
- int i;
- for(i=0; i<4; ++i)
+ for (int i = 0; i < 4; ++i)
vec4_scale(M[i], a[i], k);
}
-static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z)
+
+static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, lm_elem x, lm_elem y, lm_elem z)
{
- int i;
vec4_scale(M[0], a[0], x);
vec4_scale(M[1], a[1], y);
vec4_scale(M[2], a[2], z);
- for(i = 0; i < 4; ++i) {
+ for (int i = 0; i < 4; ++i)
M[3][i] = a[3][i];
- }
}
+
static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
{
mat4x4 temp;
- int k, r, c;
- for(c=0; c<4; ++c) for(r=0; r<4; ++r) {
- temp[c][r] = 0.f;
- for(k=0; k<4; ++k)
- temp[c][r] += a[k][r] * b[c][k];
+ for (int c = 0; c < 4; ++c) {
+ for (int r = 0; r < 4; ++r) {
+ temp[c][r] = 0.0f;
+ for (int k = 0; k < 4; ++k)
+ temp[c][r] += a[k][r] * b[c][k];
+ }
}
mat4x4_dup(M, temp);
}
+
static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
{
- int i, j;
- for(j=0; j<4; ++j) {
- r[j] = 0.f;
- for(i=0; i<4; ++i)
+ for (int j = 0; j < 4; ++j) {
+ r[j] = 0.0f;
+ for (int i = 0; i < 4; ++i)
r[j] += M[i][j] * v[i];
}
}
-static inline void mat4x4_translate(mat4x4 T, float x, float y, float z)
+
+static inline void mat4x4_translate(mat4x4 T, lm_elem x, lm_elem y, lm_elem z)
{
mat4x4_identity(T);
T[3][0] = x;
T[3][1] = y;
T[3][2] = z;
}
-static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z)
+
+static inline void mat4x4_translate_in_place(mat4x4 M, lm_elem x, lm_elem y, lm_elem z)
{
vec4 t = {x, y, z, 0};
vec4 r;
- int i;
- for (i = 0; i < 4; ++i) {
+ for (int i = 0; i < 4; ++i) {
mat4x4_row(r, M, i);
M[3][i] += vec4_mul_inner(r, t);
}
}
+
static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b)
{
- int i, j;
- for(i=0; i<4; ++i) for(j=0; j<4; ++j)
- M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f;
+ for (int i = 0; i < 4; ++i)
+ for (int j = 0; j < 4; ++j)
+ M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.0f;
}
-static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle)
+
+static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, lm_elem x, lm_elem y, lm_elem z, lm_elem angle)
{
- float s = sinf(angle);
- float c = cosf(angle);
+ lm_elem s = sinf(angle);
+ lm_elem c = cosf(angle);
vec3 u = {x, y, z};
- if(vec3_len(u) > 1e-4) {
- vec3_norm(u, u);
- mat4x4 T;
- mat4x4_from_vec3_mul_outer(T, u, u);
+ if (vec3_len(u) <= 1e-4) {
+ mat4x4_dup(R, M);
+ return;
+ }
+
+ vec3_norm(u, u);
+ mat4x4 T;
+ mat4x4_from_vec3_mul_outer(T, u, u);
- mat4x4 S = {
- { 0, u[2], -u[1], 0},
- {-u[2], 0, u[0], 0},
- { u[1], -u[0], 0, 0},
- { 0, 0, 0, 0}
- };
- mat4x4_scale(S, S, s);
+ mat4x4 S = {
+ { 0, u[2], -u[1], 0 },
+ { -u[2], 0, u[0], 0 },
+ { u[1], -u[0], 0, 0 },
+ { 0, 0, 0, 0 }
+ };
+ mat4x4_scale(S, S, s);
- mat4x4 C;
- mat4x4_identity(C);
- mat4x4_sub(C, C, T);
+ mat4x4 C;
+ mat4x4_identity(C);
+ mat4x4_sub(C, C, T);
- mat4x4_scale(C, C, c);
+ mat4x4_scale(C, C, c);
- mat4x4_add(T, T, C);
- mat4x4_add(T, T, S);
+ mat4x4_add(T, T, C);
+ mat4x4_add(T, T, S);
- T[3][3] = 1.;
- mat4x4_mul(R, M, T);
- } else {
- mat4x4_dup(R, M);
- }
+ T[3][3] = 1.;
+ mat4x4_mul(R, M, T);
}
-static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle)
+
+static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, lm_elem angle)
{
- float s = sinf(angle);
- float c = cosf(angle);
+ lm_elem s = sinf(angle);
+ lm_elem c = cosf(angle);
mat4x4 R = {
- {1.f, 0.f, 0.f, 0.f},
- {0.f, c, s, 0.f},
- {0.f, -s, c, 0.f},
- {0.f, 0.f, 0.f, 1.f}
+ { 1.0f, 0.0f, 0.0f, 0.0f },
+ { 0.0f, c, s, 0.0f },
+ { 0.0f, -s, c, 0.0f },
+ { 0.0f, 0.0f, 0.0f, 1.0f }
};
mat4x4_mul(Q, M, R);
}
-static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle)
+
+static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, lm_elem angle)
{
- float s = sinf(angle);
- float c = cosf(angle);
+ lm_elem s = sinf(angle);
+ lm_elem c = cosf(angle);
mat4x4 R = {
- { c, 0.f, s, 0.f},
- { 0.f, 1.f, 0.f, 0.f},
- { -s, 0.f, c, 0.f},
- { 0.f, 0.f, 0.f, 1.f}
+ { c, 0.0f, s, 0.0f },
+ { 0.0f, 1.0f, 0.0f, 0.0f },
+ { -s, 0.0f, c, 0.0f },
+ { 0.0f, 0.0f, 0.0f, 1.0f }
};
mat4x4_mul(Q, M, R);
}
-static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle)
+
+static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, lm_elem angle)
{
- float s = sinf(angle);
- float c = cosf(angle);
+ lm_elem s = sinf(angle);
+ lm_elem c = cosf(angle);
mat4x4 R = {
- { c, s, 0.f, 0.f},
- { -s, c, 0.f, 0.f},
- { 0.f, 0.f, 1.f, 0.f},
- { 0.f, 0.f, 0.f, 1.f}
+ { c, s, 0.0f, 0.0f },
+ { -s, c, 0.0f, 0.0f },
+ { 0.0f, 0.0f, 1.0f, 0.0f },
+ { 0.0f, 0.0f, 0.0f, 1.0f }
};
mat4x4_mul(Q, M, R);
}
+
static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
{
- float s[6];
- float c[6];
- s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1];
- s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2];
- s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3];
- s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2];
- s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3];
- s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3];
-
- c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1];
- c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2];
- c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3];
- c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2];
- c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3];
- c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3];
-
+ lm_elem s[6];
+ lm_elem c[6];
+ s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1];
+ s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2];
+ s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3];
+ s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2];
+ s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3];
+ s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3];
+
+ c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1];
+ c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2];
+ c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3];
+ c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2];
+ c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3];
+ c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3];
+
/* Assumes it is invertible */
- float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] );
-
+ lm_elem idet = 1.0f / (s[0] * c[5] - s[1] * c[4]
+ + s[2] * c[3] + s[3] * c[2]
+ - s[4] * c[1] + s[5] * c[0]);
+
T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
@@ -304,14 +312,15 @@ static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
}
+
static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
{
mat4x4_dup(R, M);
- float s = 1.;
+ lm_elem s;
vec3 h;
vec3_norm(R[2], R[2]);
-
+
s = vec3_mul_inner(R[1], R[2]);
vec3_scale(h, R[2], s);
vec3_sub(R[1], R[1], h);
@@ -328,64 +337,65 @@ static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
vec3_norm(R[0], R[0]);
}
-static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f)
+static inline void mat4x4_frustum(mat4x4 M, lm_elem l, lm_elem r, lm_elem b, lm_elem t, lm_elem n, lm_elem f)
{
- M[0][0] = 2.f*n/(r-l);
- M[0][1] = M[0][2] = M[0][3] = 0.f;
-
- M[1][1] = 2.*n/(t-b);
- M[1][0] = M[1][2] = M[1][3] = 0.f;
+ M[0][0] = 2.0f * n/(r-l);
+ M[0][1] = M[0][2] = M[0][3] = 0.0f;
+
+ M[1][1] = 2.0 * n/(t-b);
+ M[1][0] = M[1][2] = M[1][3] = 0.0f;
M[2][0] = (r+l)/(r-l);
M[2][1] = (t+b)/(t-b);
M[2][2] = -(f+n)/(f-n);
- M[2][3] = -1.f;
-
- M[3][2] = -2.f*(f*n)/(f-n);
- M[3][0] = M[3][1] = M[3][3] = 0.f;
+ M[2][3] = -1.0f;
+
+ M[3][2] = -2.0f * (f * n)/(f-n);
+ M[3][0] = M[3][1] = M[3][3] = 0.0f;
}
-static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f)
+
+static inline void mat4x4_ortho(mat4x4 M, lm_elem l, lm_elem r, lm_elem b, lm_elem t, lm_elem n, lm_elem f)
{
- M[0][0] = 2.f/(r-l);
- M[0][1] = M[0][2] = M[0][3] = 0.f;
+ M[0][0] = 2.0f/(r-l);
+ M[0][1] = M[0][2] = M[0][3] = 0.0f;
- M[1][1] = 2.f/(t-b);
- M[1][0] = M[1][2] = M[1][3] = 0.f;
+ M[1][1] = 2.0f/(t-b);
+ M[1][0] = M[1][2] = M[1][3] = 0.0f;
+
+ M[2][2] = -2.0f/(f-n);
+ M[2][0] = M[2][1] = M[2][3] = 0.0f;
- M[2][2] = -2.f/(f-n);
- M[2][0] = M[2][1] = M[2][3] = 0.f;
-
M[3][0] = -(r+l)/(r-l);
M[3][1] = -(t+b)/(t-b);
M[3][2] = -(f+n)/(f-n);
- M[3][3] = 1.f;
+ M[3][3] = 1.0f;
}
-static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f)
+
+static inline void mat4x4_perspective(mat4x4 m, lm_elem y_fov, lm_elem aspect, lm_elem n, lm_elem f)
{
- /* NOTE: Degrees are an unhandy unit to work with.
- * linmath.h uses radians for everything! */
- float const a = 1.f / tan(y_fov / 2.f);
+ lm_elem const a = 1.0f / tan(y_fov / 2.0f);
m[0][0] = a / aspect;
- m[0][1] = 0.f;
- m[0][2] = 0.f;
- m[0][3] = 0.f;
+ m[0][1] = 0.0f;
+ m[0][2] = 0.0f;
+ m[0][3] = 0.0f;
- m[1][0] = 0.f;
+ m[1][0] = 0.0f;
m[1][1] = a;
- m[1][2] = 0.f;
- m[1][3] = 0.f;
+ m[1][2] = 0.0f;
+ m[1][3] = 0.0f;
- m[2][0] = 0.f;
- m[2][1] = 0.f;
+ m[2][0] = 0.0f;
+ m[2][1] = 0.0f;
m[2][2] = -((f + n) / (f - n));
- m[2][3] = -1.f;
+ m[2][3] = -1.0f;
- m[3][0] = 0.f;
- m[3][1] = 0.f;
- m[3][2] = -((2.f * f * n) / (f - n));
- m[3][3] = 0.f;
+ m[3][0] = 0.0f;
+ m[3][1] = 0.0f;
+ m[3][2] = -((2.0f * f * n) / (f - n));
+ m[3][3] = 0.0f;
}
+
static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
{
/* Adapted from Android's OpenGL Matrix.java. */
@@ -395,9 +405,9 @@ static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
/* TODO: The negation of of can be spared by swapping the order of
* operands in the following cross products in the right way. */
vec3 f;
- vec3_sub(f, center, eye);
- vec3_norm(f, f);
-
+ vec3_sub(f, center, eye);
+ vec3_norm(f, f);
+
vec3 s;
vec3_mul_cross(s, f, up);
vec3_norm(s, s);
@@ -408,44 +418,45 @@ static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
m[0][0] = s[0];
m[0][1] = t[0];
m[0][2] = -f[0];
- m[0][3] = 0.f;
+ m[0][3] = 0.0f;
m[1][0] = s[1];
m[1][1] = t[1];
m[1][2] = -f[1];
- m[1][3] = 0.f;
+ m[1][3] = 0.0f;
m[2][0] = s[2];
m[2][1] = t[2];
m[2][2] = -f[2];
- m[2][3] = 0.f;
+ m[2][3] = 0.0f;
- m[3][0] = 0.f;
- m[3][1] = 0.f;
- m[3][2] = 0.f;
- m[3][3] = 1.f;
+ m[3][0] = 0.0f;
+ m[3][1] = 0.0f;
+ m[3][2] = 0.0f;
+ m[3][3] = 1.0f;
mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
}
-typedef float quat[4];
+typedef lm_elem quat[4];
static inline void quat_identity(quat q)
{
- q[0] = q[1] = q[2] = 0.f;
- q[3] = 1.f;
+ q[0] = q[1] = q[2] = 0.0f;
+ q[3] = 1.0f;
}
+
static inline void quat_add(quat r, quat a, quat b)
{
- int i;
- for(i=0; i<4; ++i)
+ for (int i = 0; i < 4; ++i)
r[i] = a[i] + b[i];
}
+
static inline void quat_sub(quat r, quat a, quat b)
{
- int i;
- for(i=0; i<4; ++i)
+ for (int i = 0; i < 4; ++i)
r[i] = a[i] - b[i];
}
+
static inline void quat_mul(quat r, quat p, quat q)
{
vec3 w;
@@ -456,46 +467,47 @@ static inline void quat_mul(quat r, quat p, quat q)
vec3_add(r, r, w);
r[3] = p[3]*q[3] - vec3_mul_inner(p, q);
}
-static inline void quat_scale(quat r, quat v, float s)
+
+static inline void quat_scale(quat r, quat v, lm_elem s)
{
- int i;
- for(i=0; i<4; ++i)
+ for (int i = 0; i < 4; ++i)
r[i] = v[i] * s;
}
-static inline float quat_inner_product(quat a, quat b)
+
+static inline lm_elem quat_inner_product(quat a, quat b)
{
- float p = 0.f;
- int i;
- for(i=0; i<4; ++i)
+ lm_elem p = 0.0f;
+ for (int i = 0; i < 4; ++i)
p += b[i]*a[i];
return p;
}
+
static inline void quat_conj(quat r, quat q)
{
- int i;
- for(i=0; i<3; ++i)
+ for (int i = 0; i < 3; ++i)
r[i] = -q[i];
r[3] = q[3];
}
-static inline void quat_rotate(quat r, float angle, vec3 axis) {
+
+static inline void quat_rotate(quat r, lm_elem angle, vec3 axis) {
vec3 v;
vec3_scale(v, axis, sinf(angle / 2));
- int i;
- for(i=0; i<3; ++i)
+ for (int i = 0; i < 3; ++i)
r[i] = v[i];
r[3] = cosf(angle / 2);
}
+
#define quat_norm vec4_norm
static inline void quat_mul_vec3(vec3 r, quat q, vec3 v)
{
/*
* Method by Fabian 'ryg' Giessen (of Farbrausch)
-t = 2 * cross(q.xyz, v)
-v' = v + q.w * t + cross(q.xyz, t)
+ * t = 2 * cross(q.xyz, v)
+ * v' = v + q.w * t + cross(q.xyz, t)
*/
vec3 t;
- vec3 q_xyz = {q[0], q[1], q[2]};
- vec3 u = {q[0], q[1], q[2]};
+ vec3 q_xyz = { q[0], q[1], q[2] };
+ vec3 u = { q[0], q[1], q[2] };
vec3_mul_cross(t, q_xyz, v);
vec3_scale(t, t, 2);
@@ -506,34 +518,35 @@ v' = v + q.w * t + cross(q.xyz, t)
vec3_add(r, v, t);
vec3_add(r, r, u);
}
+
static inline void mat4x4_from_quat(mat4x4 M, quat q)
{
- float a = q[3];
- float b = q[0];
- float c = q[1];
- float d = q[2];
- float a2 = a*a;
- float b2 = b*b;
- float c2 = c*c;
- float d2 = d*d;
-
+ lm_elem a = q[3];
+ lm_elem b = q[0];
+ lm_elem c = q[1];
+ lm_elem d = q[2];
+ lm_elem a2 = a * a;
+ lm_elem b2 = b * b;
+ lm_elem c2 = c * c;
+ lm_elem d2 = d * d;
+
M[0][0] = a2 + b2 - c2 - d2;
- M[0][1] = 2.f*(b*c + a*d);
- M[0][2] = 2.f*(b*d - a*c);
- M[0][3] = 0.f;
+ M[0][1] = 2.0f * (b * c + a * d);
+ M[0][2] = 2.0f * (b * d - a * c);
+ M[0][3] = 0.0f;
- M[1][0] = 2*(b*c - a*d);
+ M[1][0] = 2 * (b * c - a * d);
M[1][1] = a2 - b2 + c2 - d2;
- M[1][2] = 2.f*(c*d + a*b);
- M[1][3] = 0.f;
+ M[1][2] = 2.0f * (c * d + a * b);
+ M[1][3] = 0.0f;
- M[2][0] = 2.f*(b*d + a*c);
- M[2][1] = 2.f*(c*d - a*b);
+ M[2][0] = 2.0f * (b * d + a * c);
+ M[2][1] = 2.0f * (c * d - a * b);
M[2][2] = a2 - b2 - c2 + d2;
- M[2][3] = 0.f;
+ M[2][3] = 0.0f;
- M[3][0] = M[3][1] = M[3][2] = 0.f;
- M[3][3] = 1.f;
+ M[3][0] = M[3][1] = M[3][2] = 0.0f;
+ M[3][3] = 1.0f;
}
static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
@@ -544,37 +557,37 @@ static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
quat_mul_vec3(R[1], q, M[1]);
quat_mul_vec3(R[2], q, M[2]);
- R[3][0] = R[3][1] = R[3][2] = 0.f;
- R[3][3] = 1.f;
+ R[3][0] = R[3][1] = R[3][2] = 0.0f;
+ R[3][3] = 1.0f;
}
+
static inline void quat_from_mat4x4(quat q, mat4x4 M)
{
- float r=0.f;
- int i;
+ lm_elem r = 0.0f;
int perm[] = { 0, 1, 2, 0, 1 };
int *p = perm;
- for(i = 0; i<3; i++) {
- float m = M[i][i];
- if( m < r )
+ for (int i = 0; i < 3; i++) {
+ lm_elem m = M[i][i];
+ if (m < r)
continue;
m = r;
p = &perm[i];
}
- r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] );
+ r = sqrtf(1.0f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]);
- if(r < 1e-6) {
- q[0] = 1.f;
- q[1] = q[2] = q[3] = 0.f;
+ if (r < 1e-6) {
+ q[0] = 1.0f;
+ q[1] = q[2] = q[3] = 0.0f;
return;
}
- q[0] = r/2.f;
- q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r);
- q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r);
- q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r);
+ q[0] = r/2.0f;
+ q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.0f * r);
+ q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.0f * r);
+ q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.0f * r);
}
-#endif
+#endif // LINMATH_H