1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
// Code to setup clocks on stm32f2/stm32f4
//
// Copyright (C) 2019-2021 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "autoconf.h" // CONFIG_CLOCK_REF_FREQ
#include "board/armcm_boot.h" // VectorTable
#include "board/armcm_reset.h" // try_request_canboot
#include "board/irq.h" // irq_disable
#include "board/misc.h" // bootloader_request
#include "command.h" // DECL_CONSTANT_STR
#include "internal.h" // enable_pclock
#include "sched.h" // sched_main
/****************************************************************
* Clock setup
****************************************************************/
#define FREQ_PERIPH_DIV (CONFIG_MACH_STM32F401 ? 2 : 4)
#define FREQ_PERIPH (CONFIG_CLOCK_FREQ / FREQ_PERIPH_DIV)
#define FREQ_USB 48000000
// Map a peripheral address to its enable bits
struct cline
lookup_clock_line(uint32_t periph_base)
{
if (periph_base >= AHB1PERIPH_BASE) {
uint32_t bit = 1 << ((periph_base - AHB1PERIPH_BASE) / 0x400);
return (struct cline){.en=&RCC->AHB1ENR, .rst=&RCC->AHB1RSTR, .bit=bit};
} else if (periph_base >= APB2PERIPH_BASE) {
uint32_t bit = 1 << ((periph_base - APB2PERIPH_BASE) / 0x400);
if (bit & 0x700)
// Skip ADC peripheral reset as they share a bit
return (struct cline){.en=&RCC->APB2ENR, .bit=bit};
return (struct cline){.en=&RCC->APB2ENR, .rst=&RCC->APB2RSTR, .bit=bit};
} else {
uint32_t bit = 1 << ((periph_base - APB1PERIPH_BASE) / 0x400);
return (struct cline){.en=&RCC->APB1ENR, .rst=&RCC->APB1RSTR, .bit=bit};
}
}
// Return the frequency of the given peripheral clock
uint32_t
get_pclock_frequency(uint32_t periph_base)
{
return FREQ_PERIPH;
}
// Enable a GPIO peripheral clock
void
gpio_clock_enable(GPIO_TypeDef *regs)
{
uint32_t rcc_pos = ((uint32_t)regs - AHB1PERIPH_BASE) / 0x400;
RCC->AHB1ENR |= 1 << rcc_pos;
RCC->AHB1ENR;
}
#if !CONFIG_STM32_CLOCK_REF_INTERNAL
DECL_CONSTANT_STR("RESERVE_PINS_crystal", "PH0,PH1");
#endif
// Clock configuration
static void
enable_clock_stm32f20x(void)
{
#if CONFIG_MACH_STM32F207
uint32_t pll_base = 1000000, pll_freq = CONFIG_CLOCK_FREQ * 2, pllcfgr;
if (!CONFIG_STM32_CLOCK_REF_INTERNAL) {
// Configure 120Mhz PLL from external crystal (HSE)
uint32_t div = CONFIG_CLOCK_REF_FREQ / pll_base;
RCC->CR |= RCC_CR_HSEON;
pllcfgr = RCC_PLLCFGR_PLLSRC_HSE | (div << RCC_PLLCFGR_PLLM_Pos);
} else {
// Configure 120Mhz PLL from internal 16Mhz oscillator (HSI)
uint32_t div = 16000000 / pll_base;
pllcfgr = RCC_PLLCFGR_PLLSRC_HSI | (div << RCC_PLLCFGR_PLLM_Pos);
}
RCC->PLLCFGR = (pllcfgr | ((pll_freq/pll_base) << RCC_PLLCFGR_PLLN_Pos)
| (0 << RCC_PLLCFGR_PLLP_Pos)
| ((pll_freq/FREQ_USB) << RCC_PLLCFGR_PLLQ_Pos));
RCC->CR |= RCC_CR_PLLON;
#endif
}
static void
enable_clock_stm32f40x(void)
{
#if CONFIG_MACH_STM32F401 || CONFIG_MACH_STM32F4x5
uint32_t pll_base = (CONFIG_STM32_CLOCK_REF_25M) ? 1000000 : 2000000;
uint32_t pllp = (CONFIG_MACH_STM32F401) ? 4 : 2;
uint32_t pll_freq = CONFIG_CLOCK_FREQ * pllp, pllcfgr;
if (!CONFIG_STM32_CLOCK_REF_INTERNAL) {
// Configure 168Mhz PLL from external crystal (HSE)
uint32_t div = CONFIG_CLOCK_REF_FREQ / pll_base;
RCC->CR |= RCC_CR_HSEON;
pllcfgr = RCC_PLLCFGR_PLLSRC_HSE | (div << RCC_PLLCFGR_PLLM_Pos);
} else {
// Configure 168Mhz PLL from internal 16Mhz oscillator (HSI)
uint32_t div = 16000000 / pll_base;
pllcfgr = RCC_PLLCFGR_PLLSRC_HSI | (div << RCC_PLLCFGR_PLLM_Pos);
}
RCC->PLLCFGR = (pllcfgr | ((pll_freq/pll_base) << RCC_PLLCFGR_PLLN_Pos)
| (((pllp >> 1) - 1) << RCC_PLLCFGR_PLLP_Pos)
| ((pll_freq/FREQ_USB) << RCC_PLLCFGR_PLLQ_Pos));
RCC->CR |= RCC_CR_PLLON;
#endif
}
static void
enable_clock_stm32f446(void)
{
#if CONFIG_MACH_STM32F446
uint32_t pll_base = 2000000, pll_freq = CONFIG_CLOCK_FREQ * 2, pllcfgr;
if (!CONFIG_STM32_CLOCK_REF_INTERNAL) {
// Configure 180Mhz PLL from external crystal (HSE)
uint32_t div = CONFIG_CLOCK_REF_FREQ / pll_base;
RCC->CR |= RCC_CR_HSEON;
pllcfgr = RCC_PLLCFGR_PLLSRC_HSE | (div << RCC_PLLCFGR_PLLM_Pos);
} else {
// Configure 180Mhz PLL from internal 16Mhz oscillator (HSI)
uint32_t div = 16000000 / pll_base;
pllcfgr = RCC_PLLCFGR_PLLSRC_HSI | (div << RCC_PLLCFGR_PLLM_Pos);
}
RCC->PLLCFGR = (pllcfgr | ((pll_freq/pll_base) << RCC_PLLCFGR_PLLN_Pos)
| (0 << RCC_PLLCFGR_PLLP_Pos)
| ((pll_freq/FREQ_USB) << RCC_PLLCFGR_PLLQ_Pos)
| (6 << RCC_PLLCFGR_PLLR_Pos));
RCC->CR |= RCC_CR_PLLON;
// Enable "over drive"
enable_pclock(PWR_BASE);
PWR->CR = (3 << PWR_CR_VOS_Pos) | PWR_CR_ODEN;
while (!(PWR->CSR & PWR_CSR_ODRDY))
;
PWR->CR = (3 << PWR_CR_VOS_Pos) | PWR_CR_ODEN | PWR_CR_ODSWEN;
while (!(PWR->CSR & PWR_CSR_ODSWRDY))
;
// Enable 48Mhz USB clock for USB or for SDIO
if (CONFIG_USB || CONFIG_HAVE_GPIO_SDIO) {
uint32_t ref = (CONFIG_STM32_CLOCK_REF_INTERNAL
? 16000000 : CONFIG_CLOCK_REF_FREQ);
uint32_t plls_base = 2000000, plls_freq = FREQ_USB * 4;
RCC->PLLSAICFGR = (
((ref/plls_base) << RCC_PLLSAICFGR_PLLSAIM_Pos)
| ((plls_freq/plls_base) << RCC_PLLSAICFGR_PLLSAIN_Pos)
| (((plls_freq/FREQ_USB)/2 - 1) << RCC_PLLSAICFGR_PLLSAIP_Pos)
| ((plls_freq/FREQ_USB) << RCC_PLLSAICFGR_PLLSAIQ_Pos));
RCC->CR |= RCC_CR_PLLSAION;
while (!(RCC->CR & RCC_CR_PLLSAIRDY))
;
RCC->DCKCFGR2 = RCC_DCKCFGR2_CK48MSEL;
} else {
// Reset value just in case the booloader modified the default value
RCC->DCKCFGR2 = 0;
}
// Set SDIO clk to PLL48CLK
if (CONFIG_HAVE_GPIO_SDIO) {
MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_SDIOSEL, 0);
}
#endif
}
// Main clock setup called at chip startup
static void
clock_setup(void)
{
// Configure and enable PLL
if (CONFIG_MACH_STM32F207)
enable_clock_stm32f20x();
else if (CONFIG_MACH_STM32F401 || CONFIG_MACH_STM32F4x5)
enable_clock_stm32f40x();
else
enable_clock_stm32f446();
// Set flash latency
FLASH->ACR = (FLASH_ACR_LATENCY_5WS | FLASH_ACR_ICEN | FLASH_ACR_DCEN
| FLASH_ACR_PRFTEN);
// Wait for PLL lock
while (!(RCC->CR & RCC_CR_PLLRDY))
;
// Switch system clock to PLL
if (FREQ_PERIPH_DIV == 2)
RCC->CFGR = RCC_CFGR_PPRE1_DIV2 | RCC_CFGR_PPRE2_DIV2 | RCC_CFGR_SW_PLL;
else
RCC->CFGR = RCC_CFGR_PPRE1_DIV4 | RCC_CFGR_PPRE2_DIV4 | RCC_CFGR_SW_PLL;
while ((RCC->CFGR & RCC_CFGR_SWS_Msk) != RCC_CFGR_SWS_PLL)
;
}
/****************************************************************
* Bootloader
****************************************************************/
// Reboot into USB "HID" bootloader
static void
usb_hid_bootloader(void)
{
irq_disable();
RCC->APB1ENR |= RCC_APB1ENR_PWREN;
RCC->APB1ENR;
PWR->CR |= PWR_CR_DBP;
RTC->BKP4R = 0x424C; // HID Bootloader magic key
PWR->CR &= ~PWR_CR_DBP;
NVIC_SystemReset();
}
// Handle reboot requests
void
bootloader_request(void)
{
try_request_canboot();
if (CONFIG_STM32_FLASH_START_4000)
usb_hid_bootloader();
dfu_reboot();
}
/****************************************************************
* Startup
****************************************************************/
// Main entry point - called from armcm_boot.c:ResetHandler()
void
armcm_main(void)
{
dfu_reboot_check();
// Run SystemInit() and then restore VTOR
SystemInit();
SCB->VTOR = (uint32_t)VectorTable;
// Reset peripheral clocks (for some bootloaders that don't)
RCC->AHB1ENR = 0x38000;
RCC->AHB2ENR = 0;
RCC->APB1ENR = 0;
RCC->APB2ENR = 0;
clock_setup();
sched_main();
}
|