1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
// SDIO functions on STM32
//
// Copyright (C) 2022 H. Gregor Molter <gregor.molter@secretlab.de>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "board/io.h" // readb, writeb
#include "command.h" // shutdown
#include "sdio.h" // sdio_setup
#include "internal.h" // gpio_peripheral
#include "sched.h" // sched_shutdown
#include "generic/armcm_timer.h" // udelay
struct sdio_info {
SDIO_TypeDef *sdio;
uint8_t clk_pin, cmd_pin, dat0_pin, dat1_pin, dat2_pin, dat3_pin, function;
};
enum {
SDIO_OK = 0,
SDIO_ERROR = 1,
SDIO_TIMEOUT = 2,
SDIO_CMD_RESPONSE_TIMEOUT = 3,
SDIO_CRC_FAIL = 4,
SDIO_WRONG_CMD_RESPONSE = 5,
SDIO_WRONG_BLOCKSIZE = 6,
SDIO_DATA_TIMEOUT = 7,
SDIO_READ_OVERRUN = 8,
SDIO_WRITE_UNDERRUN = 9,
SDIO_NO_DATA_MEMORY = 10,
};
enum {
SDIO_CARDVER_UNKNOWN = 0,
SDIO_CARDVER_1X = 1,
SDIO_CARDVER_2X = 2
};
enum {
SDIO_CARDTYPE_UNKNOWN = 0,
SDIO_CARDTYPE_SDHC_SDXC = 1,
SDIO_CARDTYPE_SDSC = 2
};
enum {
SDIO_WAIT_NO_RESPONSE = 0,
SDIO_WAIT_SHORT_RESPONSE = 1,
SDIO_WAIT_LONG_RESPONSE = 2
};
// PINS: CLK -> PC12 , CMD -> PD2,
// DAT0 -> PC8, DAT1 -> PC9, DAT2 -> PC10, DAT3 -> PC11
DECL_ENUMERATION("sdio_bus", "sdio", 0);
DECL_CONSTANT_STR("BUS_PINS_sdio", "PC12,PD2,PC8,PC9,PC10,PC11");
#define SDIO_FUNCTION GPIO_FUNCTION(12)
static const struct sdio_info sdio_bus[] = {
{ SDIO, GPIO('C', 12), GPIO('D', 2), GPIO('C', 8),
GPIO('C', 9), GPIO('C', 10), GPIO('C', 11), SDIO_FUNCTION },
};
#define SDIO_CLK_FREQ 48000000
#define SDIO_INIT_CLK 400000
#define SDIO_MAX_TIMEOUT 500 // Wait for at least 500ms before a timeout occurs
#define CLKCR_CLEAR_MASK (SDIO_CLKCR_CLKDIV | SDIO_CLKCR_PWRSAV | \
SDIO_CLKCR_BYPASS | SDIO_CLKCR_WIDBUS | SDIO_CLKCR_NEGEDGE | \
SDIO_CLKCR_HWFC_EN)
#define DCTRL_CLEAR_MASK (SDIO_DCTRL_DTEN | SDIO_DCTRL_DTDIR | \
SDIO_DCTRL_DTMODE | SDIO_DCTRL_DBLOCKSIZE)
#define CMD_CLEAR_MASK (SDIO_CMD_CMDINDEX | SDIO_CMD_WAITRESP | \
SDIO_CMD_WAITINT | SDIO_CMD_WAITPEND | SDIO_CMD_CPSMEN | \
SDIO_CMD_SDIOSUSPEND)
#define SDIO_CLOCK_BYPASS_DISABLE 0
#define SDIO_CLOCK_EDGE_RISING 0
#define SDIO_CLOCK_POWER_SAVE_DISABLE 0
#define SDIO_BUS_WIDE_1B 0
#define SDIO_BUS_WIDE_4B SDIO_CLKCR_WIDBUS_0
#define SDIO_HARDWARE_FLOW_CONTROL_DISABLE 0
#define SDIO_HARDWARE_FLOW_CONTROL_ENABLE SDIO_CLKCR_HWFC_EN
#define SDIO_CMD_FLAGS (SDIO_STA_CCRCFAIL | SDIO_STA_CTIMEOUT | \
SDIO_STA_CMDREND | SDIO_STA_CMDSENT)
#define SDIO_STATIC_FLAGS (SDIO_STA_CCRCFAIL | SDIO_STA_DCRCFAIL | \
SDIO_STA_CTIMEOUT | SDIO_STA_DTIMEOUT | SDIO_STA_TXUNDERR | \
SDIO_STA_RXOVERR | SDIO_STA_CMDREND | SDIO_STA_CMDSENT | \
SDIO_STA_DATAEND | SDIO_STA_DBCKEND | SDIO_STA_SDIOIT)
struct sdio_config
sdio_setup(uint32_t bus)
{
if (bus >= ARRAY_SIZE(sdio_bus))
shutdown("Invalid sdio bus");
// Enable SDIO
SDIO_TypeDef *sdio = sdio_bus[bus].sdio;
if (!is_enabled_pclock((uint32_t)sdio)) {
// Enable clock
enable_pclock((uint32_t)sdio);
// Initialize pins
gpio_peripheral(
sdio_bus[bus].dat0_pin, sdio_bus[bus].function|GPIO_HIGH_SPEED, 1);
gpio_peripheral(
sdio_bus[bus].dat1_pin, sdio_bus[bus].function|GPIO_HIGH_SPEED, 1);
gpio_peripheral(
sdio_bus[bus].dat2_pin, sdio_bus[bus].function|GPIO_HIGH_SPEED, 1);
gpio_peripheral(
sdio_bus[bus].dat3_pin, sdio_bus[bus].function|GPIO_HIGH_SPEED, 1);
gpio_peripheral(
sdio_bus[bus].cmd_pin, sdio_bus[bus].function|GPIO_HIGH_SPEED, 1);
gpio_peripheral(
sdio_bus[bus].clk_pin, sdio_bus[bus].function|GPIO_HIGH_SPEED, 1);
}
struct sdio_config sdio_config = { .sdio = sdio };
// Setup SDIO with 1 bit width first and slow clock ~400 kHz
sdio_set_speed(sdio_config, SDIO_INIT_CLK);
// Disable clk
CLEAR_BIT(sdio->CLKCR, SDIO_CLKCR_CLKEN);
// Set power state to _on_
sdio->POWER = SDIO_POWER_PWRCTRL;
// Wait for 2ms (standard: at least 1ms) to settle
udelay(2000);
// Enable Clk
SET_BIT(sdio->CLKCR, SDIO_CLKCR_CLKEN);
return sdio_config;
}
uint32_t
sdio_get_cmd_error(struct sdio_config sdio, uint32_t flags)
{
SDIO_TypeDef *regs = sdio.sdio;
// wait for a timeout (max. SDIO_MAX_TIMEOUT) in msec.
// 8 cycles is the instruction cycles for the loop below.
uint32_t sta;
uint32_t count = SDIO_MAX_TIMEOUT * (SystemCoreClock / 8U / 1000U);
do {
if (count-- == 0) {
return SDIO_TIMEOUT;
}
sta = regs->STA;
} while ((sta & flags) == 0 || (sta & SDIO_STA_CMDACT) != 0);
regs->ICR = SDIO_CMD_FLAGS;
if (sta & SDIO_STA_CTIMEOUT) {
return SDIO_CMD_RESPONSE_TIMEOUT;
}
if (sta & SDIO_STA_CCRCFAIL) {
return SDIO_CRC_FAIL;
}
return SDIO_OK;
}
uint8_t
sdio_send_command(struct sdio_config sdio_config, uint8_t cmd,
uint32_t argument, uint8_t wait, uint8_t *response_data,
uint8_t *response_data_len)
{
SDIO_TypeDef *sdio = sdio_config.sdio;
uint32_t wait_flags = 0; // valid for SDIO_WAIT_NO_RESPONSE
uint32_t sta_flags = (wait == SDIO_WAIT_NO_RESPONSE) ?
SDIO_STA_CMDSENT : SDIO_STA_CCRCFAIL | SDIO_STA_CMDREND | \
SDIO_STA_CTIMEOUT;
if (wait == SDIO_WAIT_SHORT_RESPONSE) {
wait_flags = SDIO_CMD_WAITRESP_0;
} else if (wait == SDIO_WAIT_LONG_RESPONSE) {
wait_flags = SDIO_CMD_WAITRESP;
}
// Step 1: Send command and argument
// CMD and State Machine enabled.
// Wait for response like specified by wait_flags.
uint32_t cmdreg = (cmd & 0x3F) | wait_flags | SDIO_CMD_CPSMEN;
sdio->ARG = argument;
MODIFY_REG(sdio->CMD, CMD_CLEAR_MASK, cmdreg);
// Step 2: Wait until response
// wait for a timeout (max. SDIO_MAX_TIMEOUT) in msec.
// 8 cycles is the instruction cycles for the loop below.
uint32_t sta;
uint32_t count = SDIO_MAX_TIMEOUT * (SystemCoreClock / 8U / 1000U);
do {
if (count-- == 0) {
return SDIO_TIMEOUT;
}
sta = sdio->STA;
} while ((sta & sta_flags) == 0 || (sta & SDIO_STA_CMDACT) != 0);
sdio->ICR = SDIO_CMD_FLAGS;
// Step 3: Store response_data and check for short and long responses
// timeout and crc.
if (response_data != NULL) {
if (wait == SDIO_WAIT_SHORT_RESPONSE) {
response_data[0] = (uint8_t) ((sdio->RESP1 >> 24) & 0xFF);
response_data[1] = (uint8_t) ((sdio->RESP1 >> 16) & 0xFF);
response_data[2] = (uint8_t) ((sdio->RESP1 >> 8) & 0xFF);
response_data[3] = (uint8_t) ((sdio->RESP1) & 0xFF);
*response_data_len = 4;
} else if (wait == SDIO_WAIT_LONG_RESPONSE) {
// TODO Inverse?
response_data[0] = (uint8_t) ((sdio->RESP1 >> 24) & 0xFF);
response_data[1] = (uint8_t) ((sdio->RESP1 >> 16) & 0xFF);
response_data[2] = (uint8_t) ((sdio->RESP1 >> 8) & 0xFF);
response_data[3] = (uint8_t) ((sdio->RESP1) & 0xFF);
response_data[4] = (uint8_t) ((sdio->RESP2 >> 24) & 0xFF);
response_data[5] = (uint8_t) ((sdio->RESP2 >> 16) & 0xFF);
response_data[6] = (uint8_t) ((sdio->RESP2 >> 8) & 0xFF);
response_data[7] = (uint8_t) ((sdio->RESP2) & 0xFF);
response_data[8] = (uint8_t) ((sdio->RESP3 >> 24) & 0xFF);
response_data[9] = (uint8_t) ((sdio->RESP3 >> 16) & 0xFF);
response_data[10] = (uint8_t) ((sdio->RESP3 >> 8) & 0xFF);
response_data[11] = (uint8_t) ((sdio->RESP3) & 0xFF);
response_data[12] = (uint8_t) ((sdio->RESP4 >> 24) & 0xFF);
response_data[13] = (uint8_t) ((sdio->RESP4 >> 16) & 0xFF);
response_data[14] = (uint8_t) ((sdio->RESP4 >> 8) & 0xFF);
response_data[15] = (uint8_t) ((sdio->RESP4) & 0xFF);
*response_data_len = 16;
}
}
if (wait != SDIO_WAIT_NO_RESPONSE) {
// CTIMEOUT and CCRCFAIL check only for short or long responses.
if (sta & SDIO_STA_CTIMEOUT) {
return SDIO_CMD_RESPONSE_TIMEOUT;
}
if (sta & SDIO_STA_CCRCFAIL) {
return SDIO_CRC_FAIL;
}
}
// Step 4: For a short response check the response cmd field, too.
if (wait == SDIO_WAIT_SHORT_RESPONSE) {
if (sdio->RESPCMD != cmd) {
return SDIO_WRONG_CMD_RESPONSE;
}
}
return SDIO_OK;
}
uint32_t
sdio_get_dctrl_blocksize(uint32_t value)
{
switch(value) {
case 1: return 0U;
case 2: return SDIO_DCTRL_DBLOCKSIZE_0;
case 4: return SDIO_DCTRL_DBLOCKSIZE_1;
case 8: return SDIO_DCTRL_DBLOCKSIZE_1|SDIO_DCTRL_DBLOCKSIZE_0;
case 16: return SDIO_DCTRL_DBLOCKSIZE_2;
case 32: return SDIO_DCTRL_DBLOCKSIZE_2|SDIO_DCTRL_DBLOCKSIZE_0;
case 64: return SDIO_DCTRL_DBLOCKSIZE_2|SDIO_DCTRL_DBLOCKSIZE_1;
case 128: return SDIO_DCTRL_DBLOCKSIZE_2|SDIO_DCTRL_DBLOCKSIZE_1| \
SDIO_DCTRL_DBLOCKSIZE_0;
case 256: return SDIO_DCTRL_DBLOCKSIZE_3;
case 512: return SDIO_DCTRL_DBLOCKSIZE_3|SDIO_DCTRL_DBLOCKSIZE_0;
case 1024: return SDIO_DCTRL_DBLOCKSIZE_3|SDIO_DCTRL_DBLOCKSIZE_1;
case 2048: return SDIO_DCTRL_DBLOCKSIZE_3|SDIO_DCTRL_DBLOCKSIZE_1| \
SDIO_DCTRL_DBLOCKSIZE_0;
case 4096: return SDIO_DCTRL_DBLOCKSIZE_3|SDIO_DCTRL_DBLOCKSIZE_2;
case 8192: return SDIO_DCTRL_DBLOCKSIZE_3|SDIO_DCTRL_DBLOCKSIZE_2| \
SDIO_DCTRL_DBLOCKSIZE_0;
case 16384: return SDIO_DCTRL_DBLOCKSIZE_3|SDIO_DCTRL_DBLOCKSIZE_2| \
SDIO_DCTRL_DBLOCKSIZE_1;
}
return SDIO_DCTRL_DBLOCKSIZE_Msk;
}
uint8_t
sdio_prepare_data_transfer(struct sdio_config sdio_config, uint8_t read,
uint32_t numblocks, uint32_t blocksize, uint32_t timeout)
{
SDIO_TypeDef *sdio = sdio_config.sdio;
uint32_t dctrl_blocksize = sdio_get_dctrl_blocksize(blocksize);
uint32_t reg = dctrl_blocksize | ((read > 0) ?
SDIO_DCTRL_DTDIR : 0U) | SDIO_DCTRL_DTEN;
if (dctrl_blocksize == SDIO_DCTRL_DBLOCKSIZE_Msk)
return SDIO_WRONG_BLOCKSIZE;
sdio->DCTRL = 0;
sdio->DTIMER = timeout;
sdio->DLEN = numblocks*blocksize;
MODIFY_REG(sdio->DCTRL, DCTRL_CLEAR_MASK, reg);
return SDIO_OK;
}
uint8_t
sdio_read_data(struct sdio_config sdio_config, uint8_t *data,
uint32_t numblocks, uint32_t blocksize)
{
// Read data by polling
SDIO_TypeDef *sdio = sdio_config.sdio;
uint32_t data_remaining = numblocks*blocksize;
uint8_t *buf = data;
if (data == NULL) {
return SDIO_NO_DATA_MEMORY;
}
while ((sdio->STA & (SDIO_STA_RXOVERR | SDIO_STA_DCRCFAIL |
SDIO_STA_DTIMEOUT | SDIO_STA_DATAEND)) == 0) {
if ((sdio->STA & SDIO_STA_RXDAVL) != 0) {
uint32_t tmp = sdio->FIFO;
for (uint8_t i=0; (i<4) && (data_remaining>0); i++) {
*buf = (uint8_t)(tmp & 0xFF);
buf++;
data_remaining--;
tmp >>= 8U;
}
}
}
uint32_t sta = sdio->STA;
sdio->ICR = SDIO_STATIC_FLAGS;
if (sta & SDIO_STA_DTIMEOUT) {
return SDIO_DATA_TIMEOUT;
}
if (sta & SDIO_STA_DCRCFAIL) {
return SDIO_CRC_FAIL;
}
if (sta & SDIO_STA_RXOVERR) {
return SDIO_READ_OVERRUN;
}
// Empty FIFO and clear flags again
while (((sdio->STA & SDIO_STA_RXDAVL) != 0) && (data_remaining > 0)) {
uint32_t tmp = sdio->FIFO;
for (uint8_t i=0; (i<4) && (data_remaining>0); i++) {
*buf = (uint8_t)(tmp & 0xFF);
buf++;
data_remaining--;
tmp >>= 8U;
}
}
sdio->ICR = SDIO_STATIC_FLAGS;
return SDIO_OK;
}
uint8_t
sdio_write_data(struct sdio_config sdio_config, uint8_t *data,
uint32_t numblocks, uint32_t blocksize)
{
// Write data by polling
SDIO_TypeDef *sdio = sdio_config.sdio;
uint32_t data_remaining = numblocks*blocksize;
uint8_t *buf = data;
if (data == NULL) {
return SDIO_NO_DATA_MEMORY;
}
while ((sdio->STA & (SDIO_STA_TXUNDERR | SDIO_STA_DCRCFAIL |
SDIO_STA_DTIMEOUT | SDIO_STA_DATAEND)) == 0) {
if ((sdio->STA & SDIO_STA_TXFIFOF) == 0) {
uint32_t tmp = 0;
for (uint8_t i=0; (i<4) && (data_remaining>0); i++) {
tmp |= ((uint32_t)(*buf) << (i<<3));
buf++;
data_remaining--;
}
sdio->FIFO = tmp;
}
}
uint32_t sta = sdio->STA;
sdio->ICR = SDIO_STATIC_FLAGS;
if (sta & SDIO_STA_DTIMEOUT) {
return SDIO_DATA_TIMEOUT;
}
if (sta & SDIO_STA_DCRCFAIL) {
return SDIO_CRC_FAIL;
}
if (sta & SDIO_STA_TXUNDERR) {
return SDIO_WRITE_UNDERRUN;
}
return SDIO_OK;
}
void
sdio_send_cmd(struct sdio_config sdio_config, uint8_t cmd, uint32_t argument,
uint8_t wait)
{
SDIO_TypeDef *sdio = sdio_config.sdio;
sdio->ARG = argument;
//CMD and State Machine enabled. Wait for response like specified.
uint32_t cmdreg = (cmd & 0x3F) | ((wait & 0xC0)) | SDIO_CMD_CPSMEN;
MODIFY_REG(sdio->CMD, CMD_CLEAR_MASK, cmdreg);
}
void
sdio_set_speed(struct sdio_config sdio_config, uint32_t speed)
{
SDIO_TypeDef *sdio = sdio_config.sdio;
uint8_t clkdiv = (SDIO_CLK_FREQ/speed)-2;
uint32_t sdio_confreg = SDIO_CLOCK_EDGE_RISING | \
SDIO_CLOCK_BYPASS_DISABLE | SDIO_CLOCK_POWER_SAVE_DISABLE | \
SDIO_BUS_WIDE_1B | SDIO_HARDWARE_FLOW_CONTROL_DISABLE | (clkdiv & 0xFF);
MODIFY_REG(sdio->CLKCR, CLKCR_CLEAR_MASK, sdio_confreg);
}
|