1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
// I2C functions on stm32
//
// Copyright (C) 2019 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "autoconf.h" // CONFIG_MACH_STM32F1
#include "board/misc.h" // timer_is_before
#include "command.h" // shutdown
#include "gpio.h" // i2c_setup
#include "internal.h" // GPIO
#include "sched.h" // sched_shutdown
#include "board/irq.h" //irq_disable
struct i2c_info {
I2C_TypeDef *i2c;
uint8_t scl_pin, sda_pin;
};
DECL_ENUMERATION("i2c_bus", "i2c1", 0);
DECL_CONSTANT_STR("BUS_PINS_i2c1", "PB6,PB7");
DECL_ENUMERATION("i2c_bus", "i2c1a", 1);
DECL_CONSTANT_STR("BUS_PINS_i2c1a", "PB8,PB9");
DECL_ENUMERATION("i2c_bus", "i2c2", 2);
DECL_CONSTANT_STR("BUS_PINS_i2c2", "PB10,PB11");
#if CONFIG_MACH_STM32F2 || CONFIG_MACH_STM32F4
DECL_ENUMERATION("i2c_bus", "i2c3", 3);
DECL_CONSTANT_STR("BUS_PINS_i2c3", "PA8,PC9");
#if CONFIG_MACH_STM32F2 || CONFIG_MACH_STM32F4x5
DECL_ENUMERATION("i2c_bus", "i2c2a", 4);
DECL_CONSTANT_STR("BUS_PINS_i2c2a", "PH4,PH5");
DECL_ENUMERATION("i2c_bus", "i2c3a", 5);
DECL_CONSTANT_STR("BUS_PINS_i2c3a", "PH7,PH8");
#endif
#endif
static const struct i2c_info i2c_bus[] = {
{ I2C1, GPIO('B', 6), GPIO('B', 7) },
{ I2C1, GPIO('B', 8), GPIO('B', 9) },
{ I2C2, GPIO('B', 10), GPIO('B', 11) },
#if CONFIG_MACH_STM32F2 || CONFIG_MACH_STM32F4
{ I2C3, GPIO('A', 8), GPIO('C', 9) },
#if CONFIG_MACH_STM32F2 || CONFIG_MACH_STM32F4x5
{ I2C2, GPIO('H', 4), GPIO('H', 5) },
{ I2C3, GPIO('H', 7), GPIO('H', 8) },
#endif
#endif
};
// Work around stm32 errata causing busy bit to be stuck
static void
i2c_busy_errata(uint8_t scl_pin, uint8_t sda_pin)
{
if (! CONFIG_MACH_STM32F1)
return;
gpio_peripheral(scl_pin, GPIO_OUTPUT | GPIO_OPEN_DRAIN, 1);
gpio_peripheral(sda_pin, GPIO_OUTPUT | GPIO_OPEN_DRAIN, 1);
gpio_peripheral(sda_pin, GPIO_OUTPUT | GPIO_OPEN_DRAIN, -1);
gpio_peripheral(scl_pin, GPIO_OUTPUT | GPIO_OPEN_DRAIN, -1);
gpio_peripheral(scl_pin, GPIO_OUTPUT | GPIO_OPEN_DRAIN, 1);
gpio_peripheral(sda_pin, GPIO_OUTPUT | GPIO_OPEN_DRAIN, 1);
}
struct i2c_config
i2c_setup(uint32_t bus, uint32_t rate, uint8_t addr)
{
// Lookup requested i2c bus
if (bus >= ARRAY_SIZE(i2c_bus))
shutdown("Unsupported i2c bus");
const struct i2c_info *ii = &i2c_bus[bus];
I2C_TypeDef *i2c = ii->i2c;
if (!is_enabled_pclock((uint32_t)i2c)) {
// Enable i2c clock and gpio
enable_pclock((uint32_t)i2c);
i2c_busy_errata(ii->scl_pin, ii->sda_pin);
gpio_peripheral(ii->scl_pin, GPIO_FUNCTION(4) | GPIO_OPEN_DRAIN, 1);
gpio_peripheral(ii->sda_pin, GPIO_FUNCTION(4) | GPIO_OPEN_DRAIN, 1);
i2c->CR1 = I2C_CR1_SWRST;
i2c->CR1 = 0;
// Set 100Khz frequency and enable
uint32_t pclk = get_pclock_frequency((uint32_t)i2c);
i2c->CR2 = pclk / 1000000;
i2c->CCR = pclk / 100000 / 2;
i2c->TRISE = (pclk / 1000000) + 1;
i2c->CR1 = I2C_CR1_PE;
}
return (struct i2c_config){ .i2c=i2c, .addr=addr<<1 };
}
static uint32_t
i2c_wait(I2C_TypeDef *i2c, uint32_t set, uint32_t clear, uint32_t timeout)
{
for (;;) {
uint32_t sr1 = i2c->SR1;
if ((sr1 & set) == set && (sr1 & clear) == 0)
return sr1;
if (!timer_is_before(timer_read_time(), timeout))
shutdown("i2c timeout");
}
}
static void
i2c_start(I2C_TypeDef *i2c, uint8_t addr, uint8_t xfer_len,
uint32_t timeout)
{
i2c->CR1 = I2C_CR1_START | I2C_CR1_PE;
i2c_wait(i2c, I2C_SR1_SB, 0, timeout);
i2c->DR = addr;
if (addr & 0x01)
i2c->CR1 |= I2C_CR1_ACK;
i2c_wait(i2c, I2C_SR1_ADDR, 0, timeout);
irqstatus_t flag = irq_save();
uint32_t sr2 = i2c->SR2;
if (addr & 0x01 && xfer_len == 1)
i2c->CR1 = I2C_CR1_STOP | I2C_CR1_PE;
irq_restore(flag);
if (!(sr2 & I2C_SR2_MSL))
shutdown("Failed to send i2c addr");
}
static void
i2c_send_byte(I2C_TypeDef *i2c, uint8_t b, uint32_t timeout)
{
i2c->DR = b;
i2c_wait(i2c, I2C_SR1_TXE, 0, timeout);
}
static uint8_t
i2c_read_byte(I2C_TypeDef *i2c, uint32_t timeout, uint8_t remaining)
{
i2c_wait(i2c, I2C_SR1_RXNE, 0, timeout);
irqstatus_t flag = irq_save();
uint8_t b = i2c->DR;
if (remaining == 1)
i2c->CR1 = I2C_CR1_STOP | I2C_CR1_PE;
irq_restore(flag);
return b;
}
static void
i2c_stop(I2C_TypeDef *i2c, uint32_t timeout)
{
i2c->CR1 = I2C_CR1_STOP | I2C_CR1_PE;
i2c_wait(i2c, 0, I2C_SR1_TXE, timeout);
}
void
i2c_write(struct i2c_config config, uint8_t write_len, uint8_t *write)
{
I2C_TypeDef *i2c = config.i2c;
uint32_t timeout = timer_read_time() + timer_from_us(5000);
i2c_start(i2c, config.addr, write_len, timeout);
while (write_len--)
i2c_send_byte(i2c, *write++, timeout);
i2c_stop(i2c, timeout);
}
void
i2c_read(struct i2c_config config, uint8_t reg_len, uint8_t *reg
, uint8_t read_len, uint8_t *read)
{
I2C_TypeDef *i2c = config.i2c;
uint32_t timeout = timer_read_time() + timer_from_us(5000);
uint8_t addr = config.addr | 0x01;
if (reg_len) {
// write the register
i2c_start(i2c, config.addr, reg_len, timeout);
while(reg_len--)
i2c_send_byte(i2c, *reg++, timeout);
}
// start/re-start and read data
i2c_start(i2c, addr, read_len, timeout);
while(read_len--) {
*read = i2c_read_byte(i2c, timeout, read_len);
read++;
}
i2c_wait(i2c, 0, I2C_SR1_RXNE, timeout);
}
|