1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
// Commands for controlling GPIO pins
//
// Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include <stddef.h> // offsetof
#include "basecmd.h" // alloc_oid
#include "board/gpio.h" // struct gpio
#include "board/irq.h" // irq_save
#include "command.h" // DECL_COMMAND
#include "sched.h" // DECL_TASK
/****************************************************************
* Digital out pins
****************************************************************/
struct digital_out_s {
struct timer timer;
struct gpio_out pin;
uint32_t max_duration;
uint8_t value, default_value;
};
static uint8_t
digital_end_event(struct timer *timer)
{
shutdown("Missed scheduling of next pin event");
}
static uint8_t
digital_out_event(struct timer *timer)
{
struct digital_out_s *d = container_of(timer, struct digital_out_s, timer);
gpio_out_write(d->pin, d->value);
if (d->value == d->default_value || !d->max_duration)
return SF_DONE;
d->timer.waketime += d->max_duration;
d->timer.func = digital_end_event;
return SF_RESCHEDULE;
}
void
command_config_digital_out(uint32_t *args)
{
struct digital_out_s *d = alloc_oid(args[0], command_config_digital_out
, sizeof(*d));
d->default_value = args[2];
d->pin = gpio_out_setup(args[1], d->default_value);
d->max_duration = args[3];
}
DECL_COMMAND(command_config_digital_out,
"config_digital_out oid=%c pin=%u default_value=%c"
" max_duration=%u");
void
command_schedule_digital_out(uint32_t *args)
{
struct digital_out_s *d = lookup_oid(args[0], command_config_digital_out);
sched_del_timer(&d->timer);
d->timer.func = digital_out_event;
d->timer.waketime = args[1];
d->value = args[2];
sched_timer(&d->timer);
}
DECL_COMMAND(command_schedule_digital_out,
"schedule_digital_out oid=%c clock=%u value=%c");
static void
digital_out_shutdown(void)
{
uint8_t i;
struct digital_out_s *d;
foreach_oid(i, d, command_config_digital_out) {
gpio_out_write(d->pin, d->default_value);
}
}
DECL_SHUTDOWN(digital_out_shutdown);
void
command_set_digital_out(uint32_t *args)
{
gpio_out_setup(args[0], args[1]);
}
DECL_COMMAND(command_set_digital_out, "set_digital_out pin=%u value=%c");
/****************************************************************
* Hardware PWM pins
****************************************************************/
struct pwm_out_s {
struct timer timer;
struct gpio_pwm pin;
uint32_t max_duration;
uint8_t value, default_value;
};
static uint8_t
pwm_event(struct timer *timer)
{
struct pwm_out_s *p = container_of(timer, struct pwm_out_s, timer);
gpio_pwm_write(p->pin, p->value);
if (p->value == p->default_value || !p->max_duration)
return SF_DONE;
p->timer.waketime += p->max_duration;
p->timer.func = digital_end_event;
return SF_RESCHEDULE;
}
void
command_config_pwm_out(uint32_t *args)
{
struct pwm_out_s *p = alloc_oid(args[0], command_config_pwm_out, sizeof(*p));
p->default_value = args[3];
p->pin = gpio_pwm_setup(args[1], args[2], p->default_value);
p->max_duration = args[4];
}
DECL_COMMAND(command_config_pwm_out,
"config_pwm_out oid=%c pin=%u cycle_ticks=%u default_value=%c"
" max_duration=%u");
void
command_schedule_pwm_out(uint32_t *args)
{
struct pwm_out_s *p = lookup_oid(args[0], command_config_pwm_out);
sched_del_timer(&p->timer);
p->timer.func = pwm_event;
p->timer.waketime = args[1];
p->value = args[2];
sched_timer(&p->timer);
}
DECL_COMMAND(command_schedule_pwm_out,
"schedule_pwm_out oid=%c clock=%u value=%c");
static void
pwm_shutdown(void)
{
uint8_t i;
struct pwm_out_s *p;
foreach_oid(i, p, command_config_pwm_out) {
gpio_pwm_write(p->pin, p->default_value);
}
}
DECL_SHUTDOWN(pwm_shutdown);
void
command_set_pwm_out(uint32_t *args)
{
gpio_pwm_setup(args[0], args[1], args[2]);
}
DECL_COMMAND(command_set_pwm_out, "set_pwm_out pin=%u cycle_ticks=%u value=%c");
/****************************************************************
* Soft PWM output pins
****************************************************************/
struct soft_pwm_s {
struct timer timer;
uint32_t on_duration, off_duration, end_time;
uint32_t next_on_duration, next_off_duration;
uint32_t max_duration, cycle_time, pulse_time;
struct gpio_out pin;
uint8_t default_value, flags;
};
enum {
SPF_ON=1<<0, SPF_TOGGLING=1<<1, SPF_CHECK_END=1<<2, SPF_HAVE_NEXT=1<<3,
SPF_NEXT_ON=1<<4, SPF_NEXT_TOGGLING=1<<5, SPF_NEXT_CHECK_END=1<<6,
};
static uint8_t soft_pwm_load_event(struct timer *timer);
// Normal pulse change event
static uint8_t
soft_pwm_toggle_event(struct timer *timer)
{
struct soft_pwm_s *s = container_of(timer, struct soft_pwm_s, timer);
gpio_out_toggle(s->pin);
s->flags ^= SPF_ON;
uint32_t waketime = s->timer.waketime;
if (s->flags & SPF_ON)
waketime += s->on_duration;
else
waketime += s->off_duration;
if (s->flags & SPF_CHECK_END && !sched_is_before(waketime, s->end_time)) {
// End of normal pulsing - next event loads new pwm settings
s->timer.func = soft_pwm_load_event;
waketime = s->end_time;
}
s->timer.waketime = waketime;
return SF_RESCHEDULE;
}
// Load next pwm settings
static uint8_t
soft_pwm_load_event(struct timer *timer)
{
struct soft_pwm_s *s = container_of(timer, struct soft_pwm_s, timer);
if (!(s->flags & SPF_HAVE_NEXT))
shutdown("Missed scheduling of next pwm event");
uint8_t flags = s->flags >> 4;
s->flags = flags;
gpio_out_write(s->pin, flags & SPF_ON);
if (!(flags & SPF_TOGGLING)) {
// Pin is in an always on (value=255) or always off (value=0) state
if (!(flags & SPF_CHECK_END))
return SF_DONE;
s->timer.waketime = s->end_time = s->end_time + s->max_duration;
return SF_RESCHEDULE;
}
// Schedule normal pin toggle timer events
s->timer.func = soft_pwm_toggle_event;
s->off_duration = s->next_off_duration;
s->on_duration = s->next_on_duration;
s->timer.waketime = s->end_time + s->on_duration;
s->end_time += s->max_duration;
return SF_RESCHEDULE;
}
void
command_config_soft_pwm_out(uint32_t *args)
{
struct soft_pwm_s *s = alloc_oid(args[0], command_config_soft_pwm_out
, sizeof(*s));
s->cycle_time = args[2];
s->pulse_time = s->cycle_time / 255;
s->default_value = !!args[3];
s->max_duration = args[4];
s->flags = s->default_value ? SPF_ON : 0;
s->pin = gpio_out_setup(args[1], s->default_value);
}
DECL_COMMAND(command_config_soft_pwm_out,
"config_soft_pwm_out oid=%c pin=%u cycle_ticks=%u default_value=%c"
" max_duration=%u");
void
command_schedule_soft_pwm_out(uint32_t *args)
{
struct soft_pwm_s *s = lookup_oid(args[0], command_config_soft_pwm_out);
uint32_t time = args[1];
uint8_t value = args[2];
uint8_t next_flags = SPF_CHECK_END | SPF_HAVE_NEXT;
uint32_t next_on_duration, next_off_duration;
if (value == 0 || value == 255) {
next_on_duration = next_off_duration = 0;
next_flags |= value ? SPF_NEXT_ON : 0;
if (!!value != s->default_value && s->max_duration)
next_flags |= SPF_NEXT_CHECK_END;
} else {
next_on_duration = s->pulse_time * value;
next_off_duration = s->cycle_time - next_on_duration;
next_flags |= SPF_NEXT_ON | SPF_NEXT_TOGGLING;
if (s->max_duration)
next_flags |= SPF_NEXT_CHECK_END;
}
uint8_t flag = irq_save();
if (s->flags & SPF_CHECK_END && sched_is_before(s->end_time, time))
shutdown("next soft pwm extends existing pwm");
s->end_time = time;
s->next_on_duration = next_on_duration;
s->next_off_duration = next_off_duration;
s->flags |= next_flags;
if (s->flags & SPF_TOGGLING && sched_is_before(s->timer.waketime, time)) {
// soft_pwm_toggle_event() will schedule a load event when ready
} else {
// Schedule the loading of the pwm parameters at the requested time
sched_del_timer(&s->timer);
s->timer.waketime = time;
s->timer.func = soft_pwm_load_event;
sched_timer(&s->timer);
}
irq_restore(flag);
}
DECL_COMMAND(command_schedule_soft_pwm_out,
"schedule_soft_pwm_out oid=%c clock=%u value=%c");
static void
soft_pwm_shutdown(void)
{
uint8_t i;
struct soft_pwm_s *s;
foreach_oid(i, s, command_config_soft_pwm_out) {
gpio_out_write(s->pin, s->default_value);
s->flags = s->default_value ? SPF_ON : 0;
}
}
DECL_SHUTDOWN(soft_pwm_shutdown);
/****************************************************************
* Analog input pins
****************************************************************/
struct analog_in {
struct timer timer;
uint32_t rest_time, sample_time, next_begin_time;
uint16_t value, min_value, max_value;
struct gpio_adc pin;
uint8_t state, sample_count;
};
static uint8_t
analog_in_event(struct timer *timer)
{
struct analog_in *a = container_of(timer, struct analog_in, timer);
if (gpio_adc_sample(a->pin)) {
a->timer.waketime += gpio_adc_sample_time();
return SF_RESCHEDULE;
}
uint16_t value = gpio_adc_read(a->pin);
uint8_t state = a->state;
if (state >= a->sample_count) {
state = 0;
} else {
value += a->value;
}
a->value = value;
a->state = state+1;
if (a->state < a->sample_count) {
a->timer.waketime += a->sample_time;
return SF_RESCHEDULE;
}
if (a->value < a->min_value || a->value > a->max_value)
shutdown("adc out of range");
a->next_begin_time += a->rest_time;
a->timer.waketime = a->next_begin_time;
return SF_RESCHEDULE;
}
void
command_config_analog_in(uint32_t *args)
{
struct analog_in *a = alloc_oid(
args[0], command_config_analog_in, sizeof(*a));
a->timer.func = analog_in_event;
a->pin = gpio_adc_setup(args[1]);
a->state = 1;
}
DECL_COMMAND(command_config_analog_in, "config_analog_in oid=%c pin=%u");
void
command_query_analog_in(uint32_t *args)
{
struct analog_in *a = lookup_oid(args[0], command_config_analog_in);
sched_del_timer(&a->timer);
gpio_adc_clear_sample(a->pin);
a->next_begin_time = args[1];
a->timer.waketime = a->next_begin_time;
a->sample_time = args[2];
a->sample_count = args[3];
a->state = a->sample_count + 1;
a->rest_time = args[4];
a->min_value = args[5];
a->max_value = args[6];
if (! a->sample_count)
return;
sched_timer(&a->timer);
}
DECL_COMMAND(command_query_analog_in,
"query_analog_in oid=%c clock=%u sample_ticks=%u sample_count=%c"
" rest_ticks=%u min_value=%hu max_value=%hu");
static void
analog_in_task(void)
{
static uint16_t next;
if (!sched_check_periodic(3, &next))
return;
uint8_t oid;
struct analog_in *a;
foreach_oid(oid, a, command_config_analog_in) {
if (a->state != a->sample_count)
continue;
uint8_t flag = irq_save();
if (a->state != a->sample_count) {
irq_restore(flag);
continue;
}
uint16_t value = a->value;
uint32_t next_begin_time = a->next_begin_time;
a->state++;
irq_restore(flag);
sendf("analog_in_state oid=%c next_clock=%u value=%hu"
, oid, next_begin_time, value);
}
}
DECL_TASK(analog_in_task);
static void
analog_in_shutdown(void)
{
uint8_t i;
struct analog_in *a;
foreach_oid(i, a, command_config_analog_in) {
gpio_adc_clear_sample(a->pin);
}
}
DECL_SHUTDOWN(analog_in_shutdown);
|