1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
// Hardware PWM support on atsam
//
// Copyright (C) 2019 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "board/irq.h" // irq_save
#include "command.h" // shutdown
#include "gpio.h" // gpio_pwm_write
#include "internal.h" // GPIO
#include "sched.h" // sched_shutdown
#define MAX_PWM 255
DECL_CONSTANT("PWM_MAX", MAX_PWM);
/****************************************************************
* TC hardware device
****************************************************************/
struct gpio_tc_info {
uint8_t gpio, ptype, id;
volatile void *reg;
};
static const struct gpio_tc_info tc_regs[] = {
#if CONFIG_MACH_SAM3X
{ GPIO('B', 25), 'B', ID_TC0, &TC0->TC_CHANNEL[0].TC_RA },
{ GPIO('A', 2), 'A', ID_TC1, &TC0->TC_CHANNEL[1].TC_RA },
{ GPIO('A', 5), 'A', ID_TC2, &TC0->TC_CHANNEL[2].TC_RA },
{ GPIO('B', 27), 'B', ID_TC0, &TC0->TC_CHANNEL[0].TC_RB },
{ GPIO('A', 3), 'A', ID_TC1, &TC0->TC_CHANNEL[1].TC_RB },
{ GPIO('A', 6), 'A', ID_TC2, &TC0->TC_CHANNEL[2].TC_RB },
{ GPIO('B', 0), 'B', ID_TC3, &TC1->TC_CHANNEL[0].TC_RA },
{ GPIO('B', 2), 'B', ID_TC4, &TC1->TC_CHANNEL[1].TC_RA },
{ GPIO('B', 4), 'B', ID_TC5, &TC1->TC_CHANNEL[2].TC_RA },
{ GPIO('B', 1), 'B', ID_TC3, &TC1->TC_CHANNEL[0].TC_RB },
{ GPIO('B', 3), 'B', ID_TC4, &TC1->TC_CHANNEL[1].TC_RB },
{ GPIO('B', 5), 'B', ID_TC5, &TC1->TC_CHANNEL[2].TC_RB },
#if CONFIG_MACH_SAM3X8E
{ GPIO('C', 25), 'B', ID_TC6, &TC2->TC_CHANNEL[0].TC_RA },
{ GPIO('C', 28), 'B', ID_TC7, &TC2->TC_CHANNEL[1].TC_RA },
{ GPIO('D', 7), 'B', ID_TC8, &TC2->TC_CHANNEL[2].TC_RA },
{ GPIO('C', 26), 'B', ID_TC6, &TC2->TC_CHANNEL[0].TC_RB },
{ GPIO('C', 29), 'B', ID_TC7, &TC2->TC_CHANNEL[1].TC_RB },
{ GPIO('D', 8), 'B', ID_TC8, &TC2->TC_CHANNEL[2].TC_RB },
#endif
#elif CONFIG_MACH_SAM4
{ GPIO('A', 0), 'B', ID_TC0, &TC0->TC_CHANNEL[0].TC_RA },
{ GPIO('A', 15), 'B', ID_TC1, &TC0->TC_CHANNEL[1].TC_RA },
{ GPIO('A', 26), 'B', ID_TC2, &TC0->TC_CHANNEL[2].TC_RA },
{ GPIO('A', 1), 'B', ID_TC0, &TC0->TC_CHANNEL[0].TC_RB },
{ GPIO('A', 16), 'B', ID_TC1, &TC0->TC_CHANNEL[1].TC_RB },
{ GPIO('A', 27), 'B', ID_TC2, &TC0->TC_CHANNEL[2].TC_RB },
{ GPIO('C', 23), 'B', ID_TC3, &TC1->TC_CHANNEL[0].TC_RA },
{ GPIO('C', 26), 'B', ID_TC4, &TC1->TC_CHANNEL[1].TC_RA },
{ GPIO('C', 29), 'B', ID_TC5, &TC1->TC_CHANNEL[2].TC_RA },
{ GPIO('C', 24), 'B', ID_TC3, &TC1->TC_CHANNEL[0].TC_RB },
{ GPIO('C', 27), 'B', ID_TC4, &TC1->TC_CHANNEL[1].TC_RB },
{ GPIO('C', 30), 'B', ID_TC5, &TC1->TC_CHANNEL[2].TC_RB },
#if CONFIG_MACH_SAM4E8E
{ GPIO('C', 5), 'B', ID_TC6, &TC2->TC_CHANNEL[0].TC_RA },
{ GPIO('C', 8), 'B', ID_TC7, &TC2->TC_CHANNEL[1].TC_RA },
{ GPIO('C', 11), 'B', ID_TC8, &TC2->TC_CHANNEL[2].TC_RA },
{ GPIO('C', 6), 'B', ID_TC6, &TC2->TC_CHANNEL[0].TC_RB },
{ GPIO('C', 9), 'B', ID_TC7, &TC2->TC_CHANNEL[1].TC_RB },
{ GPIO('C', 12), 'B', ID_TC8, &TC2->TC_CHANNEL[2].TC_RB },
#endif
#endif
};
static inline int tc_is_tc(struct gpio_pwm g) {
return (((uint32_t)g.reg & ~0xffff) == ((uint32_t)TC0 & ~0xffff));
}
static inline TcChannel *tc_from_reg(struct gpio_pwm g) {
return (void*)((uint32_t)g.reg & ~0x3f);
}
static inline int tc_is_b(struct gpio_pwm g) {
return (((uint32_t)g.reg & 0x3f)
== ((uint32_t)&TC0->TC_CHANNEL[0].TC_RB & 0x3f));
}
static void
gpio_tc_write(struct gpio_pwm g, uint32_t val)
{
TcChannel *tc = tc_from_reg(g);
uint32_t mask = TC_CMR_ACPA_Msk | TC_CMR_ACPC_Msk;
uint32_t bits = TC_CMR_ACPA_CLEAR | TC_CMR_ACPC_SET;
if (!val)
bits = TC_CMR_ACPA_CLEAR | TC_CMR_ACPC_CLEAR;
else if (val >= MAX_PWM)
bits = TC_CMR_ACPA_SET | TC_CMR_ACPC_SET;
if (tc_is_b(g)) {
mask <<= 8;
bits <<= 8;
}
irqstatus_t flag = irq_save();
tc->TC_CMR = (tc->TC_CMR & ~mask) | bits;
*(volatile uint32_t*)g.reg = val;
irq_restore(flag);
}
static struct gpio_pwm
gpio_tc_setup(uint8_t pin, uint32_t cycle_time, uint8_t val)
{
// Find pin in tc_regs table
const struct gpio_tc_info *p = tc_regs;
for (; ; p++) {
if (p >= &tc_regs[ARRAY_SIZE(tc_regs)])
shutdown("Not a valid PWM pin");
if (p->gpio == pin)
break;
}
// Map cycle_time to clock divisor
uint32_t div = TC_CMR_TCCLKS_TIMER_CLOCK4;
if (cycle_time < (MAX_PWM*8 + MAX_PWM*2) / 2)
div = TC_CMR_TCCLKS_TIMER_CLOCK1;
else if (cycle_time < (MAX_PWM*32 + MAX_PWM*8) / 2)
div = TC_CMR_TCCLKS_TIMER_CLOCK2;
else if (cycle_time < (MAX_PWM*128 + MAX_PWM*32) / 2)
div = TC_CMR_TCCLKS_TIMER_CLOCK3;
// Enable clock
enable_pclock(p->id);
// Enable PWM output
struct gpio_pwm g = (struct gpio_pwm){ (void*)p->reg };
TcChannel *tc = tc_from_reg(g);
uint32_t prev_cmr = tc->TC_CMR;
if (prev_cmr && (prev_cmr & TC_CMR_TCCLKS_Msk) != div)
shutdown("PWM already programmed at different speed");
gpio_peripheral(pin, p->ptype, 0);
if (prev_cmr) {
gpio_tc_write(g, val);
} else {
tc->TC_CMR = TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | div | TC_CMR_EEVT_XC0;
gpio_tc_write(g, val);
tc->TC_RC = MAX_PWM;
tc->TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG;
}
return g;
}
/****************************************************************
* PWM hardware device
****************************************************************/
struct gpio_pwm_info {
uint8_t gpio, channel, ptype;
};
static const struct gpio_pwm_info pwm_regs[] = {
#if CONFIG_MACH_SAM3X
{ GPIO('A', 21), 0, 'B' },
{ GPIO('B', 16), 0, 'B' },
{ GPIO('A', 12), 1, 'B' },
{ GPIO('B', 17), 1, 'B' },
{ GPIO('A', 20), 2, 'B' },
{ GPIO('B', 18), 2, 'B' },
{ GPIO('A', 0), 3, 'B' },
{ GPIO('B', 19), 3, 'B' },
#if CONFIG_MACH_SAM3X8E
{ GPIO('C', 2), 0, 'B' },
{ GPIO('C', 4), 1, 'B' },
{ GPIO('C', 6), 2, 'B' },
{ GPIO('C', 8), 3, 'B' },
{ GPIO('C', 21), 4, 'B' },
{ GPIO('C', 22), 5, 'B' },
{ GPIO('C', 23), 6, 'B' },
{ GPIO('C', 24), 7, 'B' },
#endif
#elif CONFIG_MACH_SAM4
{ GPIO('A', 19), 0, 'B' },
{ GPIO('B', 5), 0, 'B' },
{ GPIO('C', 0), 0, 'B' },
{ GPIO('C', 13), 0, 'B' },
{ GPIO('A', 20), 1, 'B' },
{ GPIO('B', 12), 1, 'A' },
{ GPIO('C', 1), 1, 'B' },
{ GPIO('C', 15), 1, 'B' },
{ GPIO('A', 16), 2, 'C' },
{ GPIO('A', 30), 2, 'A' },
{ GPIO('B', 13), 2, 'A' },
{ GPIO('C', 2), 2, 'B' },
{ GPIO('A', 15), 3, 'C' },
{ GPIO('C', 3), 3, 'B' },
{ GPIO('C', 22), 3, 'B' },
#endif
};
struct gpio_pwm
gpio_pwm_setup(uint8_t pin, uint32_t cycle_time, uint8_t val)
{
// Find pin in pwm_regs table
const struct gpio_pwm_info *p = pwm_regs;
for (; ; p++) {
if (p >= &pwm_regs[ARRAY_SIZE(pwm_regs)])
return gpio_tc_setup(pin, cycle_time, val);
if (p->gpio == pin)
break;
}
// Map cycle_time to pwm clock divisor
uint32_t div;
for (div=0; div<10; div++)
if (cycle_time < ((MAX_PWM << (div + 1)) + (MAX_PWM << div)) / 2)
break;
// Enable clock
enable_pclock(ID_PWM);
// Enable PWM output
if (PWM->PWM_SR & (1 << p->channel))
shutdown("PWM channel already in use");
gpio_peripheral(pin, p->ptype, 0);
PWM->PWM_CH_NUM[p->channel].PWM_CMR = div;
PWM->PWM_CH_NUM[p->channel].PWM_CPRD = MAX_PWM;
PWM->PWM_CH_NUM[p->channel].PWM_CDTY = val;
PWM->PWM_ENA = 1 << p->channel;
return (struct gpio_pwm){ (void*)&PWM->PWM_CH_NUM[p->channel].PWM_CDTYUPD };
}
void
gpio_pwm_write(struct gpio_pwm g, uint32_t val)
{
if (tc_is_tc(g))
gpio_tc_write(g, val);
else
*(volatile uint32_t*)g.reg = val;
}
|