1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
// GPIO functions on ar100
//
// Copyright (C) 2020-2021 Elias Bakken <elias@iagent.no>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "gpio.h"
#include "command.h"
#include "internal.h"
#include "util.h"
DECL_ENUMERATION_RANGE("pin", "PL0", 0*32, 13);
DECL_ENUMERATION_RANGE("pin", "PB0", 1*32, 10);
DECL_ENUMERATION_RANGE("pin", "PC0", 2*32, 17);
DECL_ENUMERATION_RANGE("pin", "PD0", 3*32, 25);
DECL_ENUMERATION_RANGE("pin", "PE0", 4*32, 18);
DECL_ENUMERATION_RANGE("pin", "PF0", 5*32, 7);
DECL_ENUMERATION_RANGE("pin", "PG0", 6*32, 14);
DECL_ENUMERATION_RANGE("pin", "PH0", 7*32, 12);
#define BANK(x) (x/32)
#define PIN(x) (x%32)
#define CFG_REG(x) ((x/8)*4)
#define CFG_OFF(x) ((x%8)*4)
#define PULLUP_REG(x) 0x1C + ((x/16)*4)
#define PULLUP_OFF(x) ((x%16)*2)
volatile uint32_t data_regs[8];
struct gpio_mux gpio_mux_setup(uint8_t pin, enum pin_func func){
uint8_t bank = BANK(pin);
uint8_t p = PIN(pin);
uint32_t data_reg = PIO_BASE + bank*0x24 + 0x10;
uint32_t cfg_reg = PIO_BASE + bank*0x24 + CFG_REG(p);
uint8_t cfg_off = CFG_OFF(p);
if(bank == 0) { // Handle R_PIO
data_reg = R_PIO_BASE + 0x10;
cfg_reg = R_PIO_BASE + CFG_REG(p);
}
uint32_t curr_val = read_reg(cfg_reg) & ~(0xF<<cfg_off);
write_reg(cfg_reg, curr_val | func<<cfg_off);
struct gpio_mux ret = {
.pin = p,
.reg = data_reg,
.bank = bank
};
return ret;
}
struct gpio_out gpio_out_setup(uint8_t pin, uint8_t val){
struct gpio_mux mux = gpio_mux_setup(pin, PIO_OUTPUT);
struct gpio_out ret = {
.pin = mux.pin,
.reg = mux.reg,
.bank = mux.bank,
};
data_regs[ret.bank] = read_reg(ret.reg);
gpio_out_write(ret, val);
return ret;
}
void gpio_out_write(struct gpio_out pin, uint8_t val){
data_regs[pin.bank] &= ~(1<<pin.pin);
data_regs[pin.bank] |= ((!!val)<<pin.pin);
write_reg(pin.reg, data_regs[pin.bank]);
}
void gpio_out_reset(struct gpio_out pin, uint8_t val){
uint8_t p = pin.bank * 32 + pin.pin;
gpio_out_setup(p, val);
}
uint8_t gpio_in_read(struct gpio_in pin){
data_regs[pin.bank] = read_reg(pin.reg);
return !!(data_regs[pin.bank] & (1<<pin.pin));
}
struct gpio_in gpio_in_setup(uint8_t pin, int8_t pull_up){
struct gpio_mux mux = gpio_mux_setup(pin, PIO_INPUT);
uint32_t pullup_reg = PIO_BASE + mux.bank*0x24 + PULLUP_REG(mux.pin);
uint8_t pullup_off = PULLUP_OFF(mux.pin);
if(mux.bank == 0) { // Handle R_PIO
pullup_reg = R_PIO_BASE + PULLUP_REG(mux.pin);
}
write_reg(pullup_reg, pull_up<<pullup_off);
struct gpio_in in = {
.pin = mux.pin,
.reg = mux.reg,
.bank = mux.bank
};
data_regs[mux.bank] = read_reg(mux.reg);
return in;
}
void gpio_in_reset(struct gpio_in pin, int8_t pull_up){
uint8_t p = pin.bank * 32 + pin.pin;
gpio_in_setup(p, pull_up);
}
void gpio_out_toggle_noirq(struct gpio_out pin){
data_regs[pin.bank] ^= (1<<pin.pin);
*((volatile uint32_t *)(pin.reg)) = data_regs[pin.bank];
}
void gpio_out_toggle(struct gpio_out pin){
gpio_out_toggle_noirq(pin);
}
struct spi_config spi_setup(uint32_t bus, uint8_t mode, uint32_t rate){
return (struct spi_config){ };
}
void spi_prepare(struct spi_config config){
}
void spi_transfer(struct spi_config config, uint8_t receive_data
, uint8_t len, uint8_t *data){
}
|