aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/motan/analyzers.py
blob: 4cafea76da343e56313cf89369ca769b5d60598e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Log data analyzing functions
#
# Copyright (C) 2021  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import collections
import readlog


######################################################################
# Analysis code
######################################################################

# Analyzer handlers: {name: class, ...}
AHandlers = {}

# Calculate a derivative (position to velocity, or velocity to accel)
class GenDerivative:
    ParametersMin = ParametersMax = 1
    DataSets = [
        ('derivative(<dataset>)', 'Derivative of the given dataset'),
    ]
    def __init__(self, amanager, name_parts):
        self.amanager = amanager
        self.source = name_parts[1]
        amanager.setup_dataset(self.source)
    def get_label(self):
        label = self.amanager.get_label(self.source)
        lname = label['label']
        units = label['units']
        if '(mm)' in units:
            rep = [('Position', 'Velocity'), ('(mm)', '(mm/s)')]
        elif '(mm/s)' in units:
            rep = [('Velocity', 'Acceleration'), ('(mm/s)', '(mm/s^2)')]
        else:
            return {'label': 'Derivative', 'units': 'Unknown'}
        for old, new in rep:
            lname = lname.replace(old, new).replace(old.lower(), new.lower())
            units = units.replace(old, new).replace(old.lower(), new.lower())
        return {'label': lname, 'units': units}
    def generate_data(self):
        inv_seg_time = 1. / self.amanager.get_segment_time()
        data = self.amanager.get_datasets()[self.source]
        deriv = [(data[i+1] - data[i]) * inv_seg_time
                 for i in range(len(data)-1)]
        return [deriv[0]] + deriv
AHandlers["derivative"] = GenDerivative

# Calculate a kinematic stepper position from the toolhead requested position
class GenKinematicPosition:
    ParametersMin = ParametersMax = 1
    DataSets = [
        ('kin(<stepper>)', 'Stepper position derived from toolhead kinematics'),
    ]
    def __init__(self, amanager, name_parts):
        self.amanager = amanager
        stepper = name_parts[1]
        status = self.amanager.get_initial_status()
        kin = status['configfile']['settings']['printer']['kinematics']
        if kin not in ['cartesian', 'corexy']:
            raise amanager.error("Unsupported kinematics '%s'" % (kin,))
        if stepper not in ['stepper_x', 'stepper_y', 'stepper_z']:
            raise amanager.error("Unknown stepper '%s'" % (stepper,))
        if kin == 'corexy' and stepper in ['stepper_x', 'stepper_y']:
            self.source1 = 'trapq(toolhead,x)'
            self.source2 = 'trapq(toolhead,y)'
            if stepper == 'stepper_x':
                self.generate_data = self.generate_data_corexy_plus
            else:
                self.generate_data = self.generate_data_corexy_minus
            amanager.setup_dataset(self.source1)
            amanager.setup_dataset(self.source2)
        else:
            self.source1 = 'trapq(toolhead,%s)' % (stepper[-1:],)
            self.source2 = None
            self.generate_data = self.generate_data_passthrough
            amanager.setup_dataset(self.source1)
    def get_label(self):
        return {'label': 'Position', 'units': 'Position\n(mm)'}
    def generate_data_corexy_plus(self):
        datasets = self.amanager.get_datasets()
        data1 = datasets[self.source1]
        data2 = datasets[self.source2]
        return [d1 + d2 for d1, d2 in zip(data1, data2)]
    def generate_data_corexy_minus(self):
        datasets = self.amanager.get_datasets()
        data1 = datasets[self.source1]
        data2 = datasets[self.source2]
        return [d1 - d2 for d1, d2 in zip(data1, data2)]
    def generate_data_passthrough(self):
        return self.amanager.get_datasets()[self.source1]
AHandlers["kin"] = GenKinematicPosition

# Calculate a toolhead x/y position from corexy stepper positions
class GenCorexyPosition:
    ParametersMin = ParametersMax = 3
    DataSets = [
        ('corexy(x,<stepper>,<stepper>)', 'Toolhead x position from steppers'),
        ('corexy(y,<stepper>,<stepper>)', 'Toolhead y position from steppers'),
    ]
    def __init__(self, amanager, name_parts):
        self.amanager = amanager
        self.is_plus = name_parts[1] == 'x'
        self.source1, self.source2 = name_parts[2:]
        amanager.setup_dataset(self.source1)
        amanager.setup_dataset(self.source2)
    def get_label(self):
        axis = 'x'
        if not self.is_plus:
            axis = 'y'
        return {'label': 'Derived %s Position' % (axis,),
                'units': 'Position\n(mm)'}
    def generate_data(self):
        datasets = self.amanager.get_datasets()
        data1 = datasets[self.source1]
        data2 = datasets[self.source2]
        if self.is_plus:
            return [.5 * (d1 + d2) for d1, d2 in zip(data1, data2)]
        return [.5 * (d1 - d2) for d1, d2 in zip(data1, data2)]
AHandlers["corexy"] = GenCorexyPosition

# Calculate a position deviation
class GenDeviation:
    ParametersMin = ParametersMax = 2
    DataSets = [
        ('deviation(<dataset1>,<dataset2>)', 'Difference between datasets'),
    ]
    def __init__(self, amanager, name_parts):
        self.amanager = amanager
        self.source1, self.source2 = name_parts[1:]
        amanager.setup_dataset(self.source1)
        amanager.setup_dataset(self.source2)
    def get_label(self):
        label1 = self.amanager.get_label(self.source1)
        label2 = self.amanager.get_label(self.source2)
        if label1['units'] != label2['units']:
            return {'label': 'Deviation', 'units': 'Unknown'}
        parts = label1['units'].split('\n')
        units = '\n'.join([parts[0]] + ['Deviation'] + parts[1:])
        return {'label': label1['label'] + ' deviation', 'units': units}
    def generate_data(self):
        datasets = self.amanager.get_datasets()
        data1 = datasets[self.source1]
        data2 = datasets[self.source2]
        return [d1 - d2 for d1, d2 in zip(data1, data2)]
AHandlers["deviation"] = GenDeviation


######################################################################
# Analyzer management and data generation
######################################################################

# Return a description of available analyzers
def list_datasets():
    datasets = []
    for ah in sorted(AHandlers.keys()):
        datasets += AHandlers[ah].DataSets
    return datasets

# Manage raw and generated data samples
class AnalyzerManager:
    error = None
    def __init__(self, lmanager, segment_time):
        self.lmanager = lmanager
        self.error = lmanager.error
        self.segment_time = segment_time
        self.raw_datasets = collections.OrderedDict()
        self.gen_datasets = collections.OrderedDict()
        self.datasets = {}
        self.dataset_times = []
        self.duration = 5.
    def set_duration(self, duration):
        self.duration = duration
    def get_segment_time(self):
        return self.segment_time
    def get_datasets(self):
        return self.datasets
    def get_dataset_times(self):
        return self.dataset_times
    def get_initial_status(self):
        return self.lmanager.get_initial_status()
    def setup_dataset(self, name):
        name = name.strip()
        if name in self.raw_datasets:
            return self.raw_datasets[name]
        if name in self.gen_datasets:
            return self.gen_datasets[name]
        name_parts = readlog.name_split(name)
        if name_parts[0] in self.lmanager.available_dataset_types():
            hdl = self.lmanager.setup_dataset(name)
            self.raw_datasets[name] = hdl
        else:
            cls = AHandlers.get(name_parts[0])
            if cls is None:
                raise self.error("Unknown dataset '%s'" % (name,))
            num_param = len(name_parts) - 1
            if num_param < cls.ParametersMin or num_param > cls.ParametersMax:
                raise self.error("Invalid parameters to dataset '%s'" % (name,))
            hdl = cls(self, name_parts)
            self.gen_datasets[name] = hdl
        self.datasets[name] = []
        return hdl
    def get_label(self, dataset):
        hdl = self.raw_datasets.get(dataset)
        if hdl is None:
            hdl = self.gen_datasets.get(dataset)
            if hdl is None:
                raise error("Unknown dataset '%s'" % (dataset,))
        return hdl.get_label()
    def generate_datasets(self):
        # Generate raw data
        list_hdls = [(self.datasets[name], hdl)
                     for name, hdl in self.raw_datasets.items()]
        initial_start_time = self.lmanager.get_initial_start_time()
        start_time = t = self.lmanager.get_start_time()
        end_time = start_time + self.duration
        while t < end_time:
            t += self.segment_time
            self.dataset_times.append(t - initial_start_time)
            for dl, hdl in list_hdls:
                dl.append(hdl.pull_data(t))
        # Generate analyzer data
        for name, hdl in self.gen_datasets.items():
            self.datasets[name] = hdl.generate_data()