aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/graph_extruder.py
blob: 6f31ed3cf33abf945bc4543c58373143f414cde2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python
# Generate extruder pressure advance motion graphs
#
# Copyright (C) 2019-2021  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, optparse, datetime
import matplotlib

SEG_TIME = .000100
INV_SEG_TIME = 1. / SEG_TIME


######################################################################
# Basic trapezoid motion
######################################################################

# List of moves: [(start_v, end_v, move_t), ...]
Moves = [
    (0., 0., .100),
    (0., 100., None), (100., 100., .200), (100., 60., None),
    (60., 100., None), (100., 100., .200), (100., 0., None),
    (0., 0., .300)
]
EXTRUDE_R = (.4 * .4 * .75) / (math.pi * (1.75 / 2.)**2)
ACCEL = 3000. * EXTRUDE_R

def gen_positions():
    out = []
    start_d = start_t = t = 0.
    for start_v, end_v, move_t in Moves:
        start_v *= EXTRUDE_R
        end_v *= EXTRUDE_R
        if move_t is None:
            move_t = abs(end_v - start_v) / ACCEL
        half_accel = 0.
        if end_v > start_v:
            half_accel = .5 * ACCEL
        elif start_v > end_v:
            half_accel = -.5 * ACCEL
        end_t = start_t + move_t
        while t <= end_t:
            rel_t = t - start_t
            out.append(start_d + (start_v + half_accel * rel_t) * rel_t)
            t += SEG_TIME
        start_d += (start_v + half_accel * move_t) * move_t
        start_t = end_t
    return out


######################################################################
# List helper functions
######################################################################

MARGIN_TIME = 0.050

def time_to_index(t):
    return int(t * INV_SEG_TIME + .5)

def indexes(positions):
    drop = time_to_index(MARGIN_TIME)
    return range(drop, len(positions)-drop)

def trim_lists(*lists):
    keep = len(lists[0]) - time_to_index(2. * MARGIN_TIME)
    for l in lists:
        del l[keep:]


######################################################################
# Common data filters
######################################################################

# Generate estimated first order derivative
def gen_deriv(data):
    return [0.] + [(data[i+1] - data[i]) * INV_SEG_TIME
                   for i in range(len(data)-1)]

# Simple average between two points smooth_time away
def calc_average(positions, smooth_time):
    offset = time_to_index(smooth_time * .5)
    out = [0.] * len(positions)
    for i in indexes(positions):
        out[i] = .5 * (positions[i-offset] + positions[i+offset])
    return out

# Average (via integration) of smooth_time range
def calc_smooth(positions, smooth_time):
    offset = time_to_index(smooth_time * .5)
    weight = 1. / (2*offset - 1)
    out = [0.] * len(positions)
    for i in indexes(positions):
        out[i] = sum(positions[i-offset+1:i+offset]) * weight
    return out

# Time weighted average (via integration) of smooth_time range
def calc_weighted(positions, smooth_time):
    offset = time_to_index(smooth_time * .5)
    weight = 1. / offset**2
    out = [0.] * len(positions)
    for i in indexes(positions):
        weighted_data = [positions[j] * (offset - abs(j-i))
                         for j in range(i-offset, i+offset)]
        out[i] = sum(weighted_data) * weight
    return out


######################################################################
# Pressure advance
######################################################################

SMOOTH_TIME = .040
PRESSURE_ADVANCE = .045

# Calculate raw pressure advance positions
def calc_pa_raw(positions):
    pa = PRESSURE_ADVANCE * INV_SEG_TIME
    out = [0.] * len(positions)
    for i in indexes(positions):
        out[i] = positions[i] + pa * (positions[i+1] - positions[i])
    return out

# Pressure advance after smoothing
def calc_pa(positions):
    return calc_weighted(calc_pa_raw(positions), SMOOTH_TIME)


######################################################################
# Plotting and startup
######################################################################

def plot_motion():
    # Nominal motion
    positions = gen_positions()
    velocities = gen_deriv(positions)
    accels = gen_deriv(velocities)
    # Motion with pressure advance
    pa_positions = calc_pa_raw(positions)
    pa_velocities = gen_deriv(pa_positions)
    # Smoothed motion
    sm_positions = calc_pa(positions)
    sm_velocities = gen_deriv(sm_positions)
    # Build plot
    times = [SEG_TIME * i for i in range(len(positions))]
    trim_lists(times, velocities, accels,
               pa_positions, pa_velocities,
               sm_positions, sm_velocities)
    fig, ax1 = matplotlib.pyplot.subplots(nrows=1, sharex=True)
    ax1.set_title("Extruder Velocity")
    ax1.set_ylabel('Velocity (mm/s)')
    pa_plot, = ax1.plot(times, pa_velocities, 'r',
                        label='Pressure Advance', alpha=0.3)
    nom_plot, = ax1.plot(times, velocities, 'black', label='Nominal')
    sm_plot, = ax1.plot(times, sm_velocities, 'g', label='Smooth PA', alpha=0.9)
    fontP = matplotlib.font_manager.FontProperties()
    fontP.set_size('x-small')
    ax1.legend(handles=[nom_plot, pa_plot, sm_plot], loc='best', prop=fontP)
    ax1.set_xlabel('Time (s)')
    ax1.grid(True)
    fig.tight_layout()
    return fig

def setup_matplotlib(output_to_file):
    global matplotlib
    if output_to_file:
        matplotlib.rcParams.update({'figure.autolayout': True})
        matplotlib.use('Agg')
    import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
    import matplotlib.ticker

def main():
    # Parse command-line arguments
    usage = "%prog [options]"
    opts = optparse.OptionParser(usage)
    opts.add_option("-o", "--output", type="string", dest="output",
                    default=None, help="filename of output graph")
    options, args = opts.parse_args()
    if len(args) != 0:
        opts.error("Incorrect number of arguments")

    # Draw graph
    setup_matplotlib(options.output is not None)
    fig = plot_motion()

    # Show graph
    if options.output is None:
        matplotlib.pyplot.show()
    else:
        fig.set_size_inches(6, 2.5)
        fig.savefig(options.output)

if __name__ == '__main__':
    main()