1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
#!/usr/bin/env python3
# Generate adxl345 accelerometer graphs
#
# Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net>
# Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import importlib, optparse, os, sys
from textwrap import wrap
import numpy as np, matplotlib
sys.path.append(
os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "klippy")
)
shaper_calibrate = importlib.import_module(".shaper_calibrate", "extras")
MAX_TITLE_LENGTH = 65
def parse_log(logname, opts):
with open(logname) as f:
for header in f:
if header.startswith("#"):
continue
if header.startswith("freq,psd_x,psd_y,psd_z,psd_xyz"):
# Processed power spectral density file
break
# Raw accelerometer data
return np.loadtxt(logname, comments="#", delimiter=",")
# Parse power spectral density data
data = np.loadtxt(logname, skiprows=1, comments="#", delimiter=",")
calibration_data = shaper_calibrate.CalibrationData(
freq_bins=data[:, 0],
psd_sum=data[:, 4],
psd_x=data[:, 1],
psd_y=data[:, 2],
psd_z=data[:, 3],
)
calibration_data.set_numpy(np)
return calibration_data
######################################################################
# Raw accelerometer graphing
######################################################################
def plot_accel(datas, lognames):
fig, axes = matplotlib.pyplot.subplots(nrows=3, sharex=True)
axes[0].set_title(
"\n".join(
wrap("Accelerometer data (%s)" % (", ".join(lognames)), MAX_TITLE_LENGTH)
)
)
axis_names = ["x", "y", "z"]
for data, logname in zip(datas, lognames):
if isinstance(data, shaper_calibrate.CalibrationData):
raise error(
"Cannot plot raw accelerometer data using the processed"
" resonances, raw_data input is required"
)
first_time = data[0, 0]
times = data[:, 0] - first_time
for i in range(len(axis_names)):
avg = data[:, i + 1].mean()
adata = data[:, i + 1] - data[:, i + 1].mean()
ax = axes[i]
label = "\n".join(wrap(logname, 60)) + " (%+.3f mm/s^2)" % (-avg,)
ax.plot(times, adata, alpha=0.8, label=label)
axes[-1].set_xlabel("Time (s)")
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size("x-small")
for i in range(len(axis_names)):
ax = axes[i]
ax.grid(True)
ax.legend(loc="best", prop=fontP)
ax.set_ylabel("%s accel" % (axis_names[i],))
fig.tight_layout()
return fig
######################################################################
# Frequency graphing
######################################################################
# Calculate estimated "power spectral density"
def calc_freq_response(data, max_freq):
if isinstance(data, shaper_calibrate.CalibrationData):
return data
helper = shaper_calibrate.ShaperCalibrate(printer=None)
return helper.process_accelerometer_data(data)
def calc_specgram(data, axis):
if isinstance(data, shaper_calibrate.CalibrationData):
raise error(
"Cannot calculate the spectrogram using the processed"
" resonances, raw_data input is required"
)
N = data.shape[0]
Fs = N / (data[-1, 0] - data[0, 0])
# Round up to a power of 2 for faster FFT
M = 1 << int(0.5 * Fs - 1).bit_length()
window = np.kaiser(M, 6.0)
def _specgram(x):
return matplotlib.mlab.specgram(
x,
Fs=Fs,
NFFT=M,
noverlap=M // 2,
window=window,
mode="psd",
detrend="mean",
scale_by_freq=False,
)
d = {"x": data[:, 1], "y": data[:, 2], "z": data[:, 3]}
if axis != "all":
pdata, bins, t = _specgram(d[axis])
else:
pdata, bins, t = _specgram(d["x"])
for ax in "yz":
pdata += _specgram(d[ax])[0]
return pdata, bins, t
def plot_frequency(datas, lognames, max_freq):
calibration_data = calc_freq_response(datas[0], max_freq)
for data in datas[1:]:
calibration_data.add_data(calc_freq_response(data, max_freq))
freqs = calibration_data.freq_bins
psd = calibration_data.psd_sum[freqs <= max_freq]
px = calibration_data.psd_x[freqs <= max_freq]
py = calibration_data.psd_y[freqs <= max_freq]
pz = calibration_data.psd_z[freqs <= max_freq]
freqs = freqs[freqs <= max_freq]
fig, ax = matplotlib.pyplot.subplots()
ax.set_title(
"\n".join(
wrap("Frequency response (%s)" % (", ".join(lognames)), MAX_TITLE_LENGTH)
)
)
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("Power spectral density")
ax.plot(freqs, psd, label="X+Y+Z", alpha=0.6)
ax.plot(freqs, px, label="X", alpha=0.6)
ax.plot(freqs, py, label="Y", alpha=0.6)
ax.plot(freqs, pz, label="Z", alpha=0.6)
ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.grid(which="major", color="grey")
ax.grid(which="minor", color="lightgrey")
ax.ticklabel_format(axis="y", style="scientific", scilimits=(0, 0))
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size("x-small")
ax.legend(loc="best", prop=fontP)
fig.tight_layout()
return fig
def plot_compare_frequency(datas, lognames, max_freq, axis):
fig, ax = matplotlib.pyplot.subplots()
ax.set_title("Frequency responses comparison")
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("Power spectral density")
for data, logname in zip(datas, lognames):
calibration_data = calc_freq_response(data, max_freq)
freqs = calibration_data.freq_bins
psd = calibration_data.get_psd(axis)[freqs <= max_freq]
freqs = freqs[freqs <= max_freq]
ax.plot(freqs, psd, label="\n".join(wrap(logname, 60)), alpha=0.6)
ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.grid(which="major", color="grey")
ax.grid(which="minor", color="lightgrey")
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size("x-small")
ax.legend(loc="best", prop=fontP)
fig.tight_layout()
return fig
# Plot data in a "spectrogram colormap"
def plot_specgram(data, logname, max_freq, axis):
pdata, bins, t = calc_specgram(data, axis)
fig, ax = matplotlib.pyplot.subplots()
ax.set_title(
"\n".join(wrap("Spectrogram %s (%s)" % (axis, logname), MAX_TITLE_LENGTH))
)
ax.pcolormesh(t, bins, pdata, norm=matplotlib.colors.LogNorm())
ax.set_ylim([0.0, max_freq])
ax.set_ylabel("frequency (hz)")
ax.set_xlabel("Time (s)")
fig.tight_layout()
return fig
######################################################################
# CSV output
######################################################################
def write_frequency_response(datas, output):
helper = shaper_calibrate.ShaperCalibrate(printer=None)
calibration_data = helper.process_accelerometer_data(datas[0])
for data in datas[1:]:
calibration_data.add_data(helper.process_accelerometer_data(data))
helper.save_calibration_data(output, calibration_data)
def write_specgram(psd, freq_bins, time, output):
M = freq_bins.shape[0]
with open(output, "w") as csvfile:
csvfile.write("freq\\t")
for ts in time:
csvfile.write(",%.6f" % (ts,))
csvfile.write("\n")
for i in range(M):
csvfile.write("%.1f" % (freq_bins[i],))
for value in psd[i, :]:
csvfile.write(",%.6e" % (value,))
csvfile.write("\n")
######################################################################
# Startup
######################################################################
def is_csv_output(output):
return output and os.path.splitext(output)[1].lower() == ".csv"
def setup_matplotlib(output):
global matplotlib
if is_csv_output(output):
# Only mlab may be necessary with CSV output
import matplotlib.mlab
return
if output:
matplotlib.rcParams.update({"figure.autolayout": True})
matplotlib.use("Agg")
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
import matplotlib.ticker
def main():
# Parse command-line arguments
usage = "%prog [options] <raw logs>"
opts = optparse.OptionParser(usage)
opts.add_option(
"-o",
"--output",
type="string",
dest="output",
default=None,
help="filename of output graph",
)
opts.add_option(
"-f",
"--max_freq",
type="float",
default=200.0,
help="maximum frequency to graph",
)
opts.add_option(
"-r", "--raw", action="store_true", help="graph raw accelerometer data"
)
opts.add_option(
"-c",
"--compare",
action="store_true",
help="graph comparison of power spectral density "
"between different accelerometer data files",
)
opts.add_option(
"-s",
"--specgram",
action="store_true",
help="graph spectrogram of accelerometer data",
)
opts.add_option(
"-a",
type="string",
dest="axis",
default="all",
help="axis to graph (one of 'all', 'x', 'y', or 'z')",
)
options, args = opts.parse_args()
if len(args) < 1:
opts.error("Incorrect number of arguments")
# Parse data
datas = [parse_log(fn, opts) for fn in args]
setup_matplotlib(options.output)
if is_csv_output(options.output):
if options.raw:
opts.error("raw mode is not supported with csv output")
if options.compare:
opts.error("comparison mode is not supported with csv output")
if options.specgram:
if len(args) > 1:
opts.error("Only 1 input is supported in specgram mode")
pdata, bins, t = calc_specgram(datas[0], options.axis)
write_specgram(pdata, bins, t, options.output)
else:
write_frequency_response(datas, options.output)
return
# Draw graph
if options.raw:
fig = plot_accel(datas, args)
elif options.specgram:
if len(args) > 1:
opts.error("Only 1 input is supported in specgram mode")
fig = plot_specgram(datas[0], args[0], options.max_freq, options.axis)
elif options.compare:
fig = plot_compare_frequency(datas, args, options.max_freq, options.axis)
else:
fig = plot_frequency(datas, args, options.max_freq)
# Show graph
if options.output is None:
matplotlib.pyplot.show()
else:
fig.set_size_inches(8, 6)
fig.savefig(options.output)
if __name__ == "__main__":
main()
|