aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/graph_accelerometer.py
blob: 472530d348443a8467515c63818de561dc0ac028 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python2
# Generate adxl345 accelerometer graphs
#
# Copyright (C) 2020  Kevin O'Connor <kevin@koconnor.net>
# Copyright (C) 2020  Dmitry Butyugin <dmbutyugin@google.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import optparse, os, sys
from textwrap import wrap
import numpy as np, matplotlib
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)),
                             '..', 'klippy', 'extras'))
from shaper_calibrate import ShaperCalibrate

MAX_TITLE_LENGTH=65

def parse_log(logname, opts):
    with open(logname) as f:
        for header in f:
            if not header.startswith('#'):
                break
        if not header.startswith('freq,psd_x,psd_y,psd_z,psd_xyz'):
            # Raw accelerometer data
            return np.loadtxt(logname, comments='#', delimiter=',')
    # Power spectral density data or shaper calibration data
    opts.error("File %s does not contain raw accelerometer data and therefore "
               "is not supported by graph_accelerometer.py script. Please use "
               "calibrate_shaper.py script to process it instead." % (logname,))

######################################################################
# Raw accelerometer graphing
######################################################################

def plot_accel(data, logname):
    first_time = data[0, 0]
    times = data[:,0] - first_time
    fig, axes = matplotlib.pyplot.subplots(nrows=3, sharex=True)
    axes[0].set_title("\n".join(wrap("Accelerometer data (%s)" % (logname,),
                                     MAX_TITLE_LENGTH)))
    axis_names = ['x', 'y', 'z']
    for i in range(len(axis_names)):
        avg = data[:,i+1].mean()
        adata = data[:,i+1] - data[:,i+1].mean()
        ax = axes[i]
        ax.plot(times, adata, alpha=0.8)
        ax.grid(True)
        ax.set_ylabel('%s accel (%+.3f)\n(mm/s^2)' % (axis_names[i], -avg))
    axes[-1].set_xlabel('Time (%+.3f)\n(s)' % (-first_time,))
    fig.tight_layout()
    return fig


######################################################################
# Frequency graphing
######################################################################

# Calculate estimated "power spectral density"
def calc_freq_response(data, max_freq):
    helper = ShaperCalibrate(printer=None)
    return helper.process_accelerometer_data(data)

def calc_specgram(data, axis):
    N = data.shape[0]
    Fs = N / (data[-1,0] - data[0,0])
    # Round up to a power of 2 for faster FFT
    M = 1 << int(.5 * Fs - 1).bit_length()
    window = np.kaiser(M, 6.)
    def _specgram(x):
        return matplotlib.mlab.specgram(
                x, Fs=Fs, NFFT=M, noverlap=M//2, window=window,
                mode='psd', detrend='mean', scale_by_freq=False)

    d = {'x': data[:,1], 'y': data[:,2], 'z': data[:,3]}
    if axis != 'all':
        pdata, bins, t = _specgram(d[axis])
    else:
        pdata, bins, t = _specgram(d['x'])
        for ax in 'yz':
            pdata += _specgram(d[ax])[0]
    return pdata, bins, t

def plot_frequency(datas, lognames, max_freq):
    calibration_data = calc_freq_response(datas[0], max_freq)
    for data in datas[1:]:
        calibration_data.add_data(calc_freq_response(data, max_freq))
    freqs = calibration_data.freq_bins
    psd = calibration_data.psd_sum[freqs <= max_freq]
    px = calibration_data.psd_x[freqs <= max_freq]
    py = calibration_data.psd_y[freqs <= max_freq]
    pz = calibration_data.psd_z[freqs <= max_freq]
    freqs = freqs[freqs <= max_freq]

    fig, ax = matplotlib.pyplot.subplots()
    ax.set_title("\n".join(wrap(
        "Frequency response (%s)" % (', '.join(lognames)), MAX_TITLE_LENGTH)))
    ax.set_xlabel('Frequency (Hz)')
    ax.set_ylabel('Power spectral density')

    ax.plot(freqs, psd, label='X+Y+Z', alpha=0.6)
    ax.plot(freqs, px, label='X', alpha=0.6)
    ax.plot(freqs, py, label='Y', alpha=0.6)
    ax.plot(freqs, pz, label='Z', alpha=0.6)

    ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    ax.grid(which='major', color='grey')
    ax.grid(which='minor', color='lightgrey')
    ax.ticklabel_format(axis='y', style='scientific', scilimits=(0,0))

    fontP = matplotlib.font_manager.FontProperties()
    fontP.set_size('x-small')
    ax.legend(loc='best', prop=fontP)
    fig.tight_layout()
    return fig

def plot_compare_frequency(datas, lognames, max_freq, axis):
    fig, ax = matplotlib.pyplot.subplots()
    ax.set_title('Frequency responses comparison')
    ax.set_xlabel('Frequency (Hz)')
    ax.set_ylabel('Power spectral density')

    for data, logname in zip(datas, lognames):
        calibration_data = calc_freq_response(data, max_freq)
        freqs = calibration_data.freq_bins
        psd = calibration_data.get_psd(axis)[freqs <= max_freq]
        freqs = freqs[freqs <= max_freq]
        ax.plot(freqs, psd, label="\n".join(wrap(logname, 60)), alpha=0.6)

    ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
    ax.grid(which='major', color='grey')
    ax.grid(which='minor', color='lightgrey')
    fontP = matplotlib.font_manager.FontProperties()
    fontP.set_size('x-small')
    ax.legend(loc='best', prop=fontP)
    fig.tight_layout()
    return fig

# Plot data in a "spectrogram colormap"
def plot_specgram(data, logname, max_freq, axis):
    pdata, bins, t = calc_specgram(data, axis)

    fig, ax = matplotlib.pyplot.subplots()
    ax.set_title("\n".join(wrap("Spectrogram %s (%s)" % (axis, logname),
                 MAX_TITLE_LENGTH)))
    ax.pcolormesh(t, bins, pdata, norm=matplotlib.colors.LogNorm())
    ax.set_ylim([0., max_freq])
    ax.set_ylabel('frequency (hz)')
    ax.set_xlabel('Time (s)')
    fig.tight_layout()
    return fig

######################################################################
# CSV output
######################################################################

def write_frequency_response(datas, output):
    helper = ShaperCalibrate(printer=None)
    calibration_data = helper.process_accelerometer_data(datas[0])
    for data in datas[1:]:
        calibration_data.add_data(helper.process_accelerometer_data(data))
    helper.save_calibration_data(output, calibration_data)

def write_specgram(psd, freq_bins, time, output):
    M = freq_bins.shape[0]
    with open(output, "w") as csvfile:
        csvfile.write("freq\\t")
        for ts in time:
            csvfile.write(",%.6f" % (ts,))
        csvfile.write("\n")
        for i in range(M):
            csvfile.write("%.1f" % (freq_bins[i],))
            for value in psd[i,:]:
                csvfile.write(",%.6e" % (value,))
            csvfile.write("\n")

######################################################################
# Startup
######################################################################

def is_csv_output(output):
    return output and os.path.splitext(output)[1].lower() == '.csv'

def setup_matplotlib(output):
    global matplotlib
    if is_csv_output(output):
        # Only mlab may be necessary with CSV output
        import matplotlib.mlab
        return
    if output:
        matplotlib.rcParams.update({'figure.autolayout': True})
        matplotlib.use('Agg')
    import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
    import matplotlib.ticker

def main():
    # Parse command-line arguments
    usage = "%prog [options] <raw logs>"
    opts = optparse.OptionParser(usage)
    opts.add_option("-o", "--output", type="string", dest="output",
                    default=None, help="filename of output graph")
    opts.add_option("-f", "--max_freq", type="float", default=200.,
                    help="maximum frequency to graph")
    opts.add_option("-r", "--raw", action="store_true",
                    help="graph raw accelerometer data")
    opts.add_option("-c", "--compare", action="store_true",
                    help="graph comparison of power spectral density "
                         "between different accelerometer data files")
    opts.add_option("-s", "--specgram", action="store_true",
                    help="graph spectrogram of accelerometer data")
    opts.add_option("-a", type="string", dest="axis", default="all",
                    help="axis to graph (one of 'all', 'x', 'y', or 'z')")
    options, args = opts.parse_args()
    if len(args) < 1:
        opts.error("Incorrect number of arguments")

    # Parse data
    datas = [parse_log(fn, opts) for fn in args]

    setup_matplotlib(options.output)

    if is_csv_output(options.output):
        if options.raw:
            opts.error("raw mode is not supported with csv output")
        if options.compare:
            opts.error("comparison mode is not supported with csv output")
        if options.specgram:
            if len(args) > 1:
                opts.error("Only 1 input is supported in specgram mode")
            pdata, bins, t = calc_specgram(datas[0], options.axis)
            write_specgram(pdata, bins, t, options.output)
        else:
            write_frequency_response(datas, options.output)
        return

    # Draw graph
    if options.raw:
        if len(args) > 1:
            opts.error("Only 1 input is supported in raw mode")
        fig = plot_accel(datas[0], args[0])
    elif options.specgram:
        if len(args) > 1:
            opts.error("Only 1 input is supported in specgram mode")
        fig = plot_specgram(datas[0], args[0], options.max_freq, options.axis)
    elif options.compare:
        fig = plot_compare_frequency(datas, args, options.max_freq,
                                     options.axis)
    else:
        fig = plot_frequency(datas, args, options.max_freq)

    # Show graph
    if options.output is None:
        matplotlib.pyplot.show()
    else:
        fig.set_size_inches(8, 6)
        fig.savefig(options.output)

if __name__ == '__main__':
    main()