aboutsummaryrefslogtreecommitdiffstats
path: root/lib/can2040/can2040.c
blob: fb9e3fb62b64b9eea3ae53ee48b8f8968860e6ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
// Software CANbus implementation for rp2040
//
// Copyright (C) 2022  Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.

#include <stdint.h> // uint32_t
#include <string.h> // memset
#include "RP2040.h" // hw_set_bits
#include "can2040.h" // can2040_setup
#include "hardware/regs/dreq.h" // DREQ_PIO0_RX1
#include "hardware/structs/dma.h" // dma_hw
#include "hardware/structs/iobank0.h" // iobank0_hw
#include "hardware/structs/padsbank0.h" // padsbank0_hw
#include "hardware/structs/pio.h" // pio0_hw
#include "hardware/structs/resets.h" // RESETS_RESET_PIO0_BITS


/****************************************************************
 * rp2040 and low-level helper functions
 ****************************************************************/

// Helper compiler definitions
#define barrier() __asm__ __volatile__("": : :"memory")
#define likely(x)       __builtin_expect(!!(x), 1)
#define unlikely(x)     __builtin_expect(!!(x), 0)
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))

// Helper functions for writing to "io" memory
static inline void writel(void *addr, uint32_t val) {
    barrier();
    *(volatile uint32_t *)addr = val;
}
static inline uint32_t readl(const void *addr) {
    uint32_t val = *(volatile const uint32_t *)addr;
    barrier();
    return val;
}

// rp2040 helper function to clear a hardware reset bit
static void
rp2040_clear_reset(uint32_t reset_bit)
{
    if (resets_hw->reset & reset_bit) {
        hw_clear_bits(&resets_hw->reset, reset_bit);
        while (!(resets_hw->reset_done & reset_bit))
            ;
    }
}

// Helper to set the mode and extended function of a pin
static void
rp2040_gpio_peripheral(uint32_t gpio, int func, int pull_up)
{
    padsbank0_hw->io[gpio] = (
        PADS_BANK0_GPIO0_IE_BITS
        | (PADS_BANK0_GPIO0_DRIVE_VALUE_4MA << PADS_BANK0_GPIO0_DRIVE_MSB)
        | (pull_up > 0 ? PADS_BANK0_GPIO0_PUE_BITS : 0)
        | (pull_up < 0 ? PADS_BANK0_GPIO0_PDE_BITS : 0));
    iobank0_hw->io[gpio].ctrl = func << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
}


/****************************************************************
 * rp2040 PIO support
 ****************************************************************/

#define PIO_CLOCK_PER_BIT 32
#define PIO_RX_WAKE_BITS 10

#define can2040_offset_sync_found_end_of_message 2u
#define can2040_offset_sync_signal_start 4u
#define can2040_offset_sync_entry 6u
#define can2040_offset_sync_end 13u
#define can2040_offset_shared_rx_read 13u
#define can2040_offset_shared_rx_end 15u
#define can2040_offset_match_load_next 18u
#define can2040_offset_match_end 25u
#define can2040_offset_tx_got_recessive 25u
#define can2040_offset_tx_start 26u
#define can2040_offset_tx_conflict 31u

static const uint16_t can2040_program_instructions[] = {
    0x0085, //  0: jmp    y--, 5
    0x0048, //  1: jmp    x--, 8
    0xe12a, //  2: set    x, 10                  [1]
    0x00cc, //  3: jmp    pin, 12
    0xc000, //  4: irq    nowait 0
    0x00c0, //  5: jmp    pin, 0
    0xc040, //  6: irq    clear 0
    0xe229, //  7: set    x, 9                   [2]
    0xf242, //  8: set    y, 2                   [18]
    0xc104, //  9: irq    nowait 4               [1]
    0x03c5, // 10: jmp    pin, 5                 [3]
    0x0307, // 11: jmp    7                      [3]
    0x0043, // 12: jmp    x--, 3
    0x20c4, // 13: wait   1 irq, 4
    0x4001, // 14: in     pins, 1
    0xa046, // 15: mov    y, isr
    0x00b2, // 16: jmp    x != y, 18
    0xc002, // 17: irq    nowait 2
    0x40eb, // 18: in     osr, 11
    0x4054, // 19: in     y, 20
    0xa047, // 20: mov    y, osr
    0x8080, // 21: pull   noblock
    0xa027, // 22: mov    x, osr
    0x0098, // 23: jmp    y--, 24
    0xa0e2, // 24: mov    osr, y
    0xa242, // 25: nop                           [2]
    0x6021, // 26: out    x, 1
    0xa001, // 27: mov    pins, x
    0x20c4, // 28: wait   1 irq, 4
    0x00d9, // 29: jmp    pin, 25
    0x023a, // 30: jmp    !x, 26                 [2]
    0xc027, // 31: irq    wait 7
};

// Local names for PIO state machine IRQs
#define SI_MAYTX     PIO_IRQ0_INTE_SM0_BITS
#define SI_MATCHED   PIO_IRQ0_INTE_SM2_BITS
#define SI_ACKDONE   PIO_IRQ0_INTE_SM3_BITS
#define SI_RX_DATA   PIO_IRQ0_INTE_SM1_RXNEMPTY_BITS
#define SI_TXPENDING PIO_IRQ0_INTE_SM1_BITS // Misc bit manually forced

// Setup PIO "sync" state machine (state machine 0)
static void
pio_sync_setup(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    struct pio_sm_hw *sm = &pio_hw->sm[0];
    sm->execctrl = (
        cd->gpio_rx << PIO_SM0_EXECCTRL_JMP_PIN_LSB
        | (can2040_offset_sync_end - 1) << PIO_SM0_EXECCTRL_WRAP_TOP_LSB
        | can2040_offset_sync_signal_start << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB);
    sm->pinctrl = (
        1 << PIO_SM0_PINCTRL_SET_COUNT_LSB
        | cd->gpio_rx << PIO_SM0_PINCTRL_SET_BASE_LSB);
    sm->instr = 0xe080; // set pindirs, 0
    sm->pinctrl = 0;
    pio_hw->txf[0] = PIO_CLOCK_PER_BIT / 2 * 7 - 5 - 1;
    sm->instr = 0x80a0; // pull block
    sm->instr = can2040_offset_sync_entry; // jmp sync_entry
}

// Setup PIO "rx" state machine (state machine 1)
static void
pio_rx_setup(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    struct pio_sm_hw *sm = &pio_hw->sm[1];
    sm->execctrl = (
        (can2040_offset_shared_rx_end - 1) << PIO_SM0_EXECCTRL_WRAP_TOP_LSB
        | can2040_offset_shared_rx_read << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB);
    sm->pinctrl = cd->gpio_rx << PIO_SM0_PINCTRL_IN_BASE_LSB;
    sm->shiftctrl = 0; // flush fifo on a restart
    sm->shiftctrl = (PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS
                     | PIO_RX_WAKE_BITS << PIO_SM0_SHIFTCTRL_PUSH_THRESH_LSB
                     | PIO_SM0_SHIFTCTRL_AUTOPUSH_BITS);
    sm->instr = can2040_offset_shared_rx_read; // jmp shared_rx_read
}

// Setup PIO "match" state machine (state machine 2)
static void
pio_match_setup(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    struct pio_sm_hw *sm = &pio_hw->sm[2];
    sm->execctrl = (
        (can2040_offset_match_end - 1) << PIO_SM0_EXECCTRL_WRAP_TOP_LSB
        | can2040_offset_shared_rx_read << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB);
    sm->pinctrl = cd->gpio_rx << PIO_SM0_PINCTRL_IN_BASE_LSB;
    sm->shiftctrl = 0;
    sm->instr = 0xe040; // set y, 0
    sm->instr = 0xa0e2; // mov osr, y
    sm->instr = 0xa02a, // mov x, !y
    sm->instr = can2040_offset_match_load_next; // jmp match_load_next
}

// Setup PIO "tx" state machine (state machine 3)
static void
pio_tx_setup(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    struct pio_sm_hw *sm = &pio_hw->sm[3];
    sm->execctrl = cd->gpio_rx << PIO_SM0_EXECCTRL_JMP_PIN_LSB;
    sm->shiftctrl = (PIO_SM0_SHIFTCTRL_FJOIN_TX_BITS
                     | PIO_SM0_SHIFTCTRL_AUTOPULL_BITS);
    sm->pinctrl = (1 << PIO_SM0_PINCTRL_SET_COUNT_LSB
                   | 1 << PIO_SM0_PINCTRL_OUT_COUNT_LSB
                   | cd->gpio_tx << PIO_SM0_PINCTRL_SET_BASE_LSB
                   | cd->gpio_tx << PIO_SM0_PINCTRL_OUT_BASE_LSB);
    sm->instr = 0xe001; // set pins, 1
    sm->instr = 0xe081; // set pindirs, 1
}

// Set PIO "sync" machine to signal "may transmit" (sm irq 0) on 11 idle bits
static void
pio_sync_normal_start_signal(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    uint32_t eom_idx = can2040_offset_sync_found_end_of_message;
    pio_hw->instr_mem[eom_idx] = 0xe12a; // set x, 10 [1]
}

// Set PIO "sync" machine to signal "may transmit" (sm irq 0) on 17 idle bits
static void
pio_sync_slow_start_signal(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    uint32_t eom_idx = can2040_offset_sync_found_end_of_message;
    pio_hw->instr_mem[eom_idx] = 0xa127; // mov x, osr [1]
}

// Test if PIO "rx" state machine has overflowed its fifos
static int
pio_rx_check_stall(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    return pio_hw->fdebug & (1 << (PIO_FDEBUG_RXSTALL_LSB + 1));
}

// Set PIO "match" state machine to raise a "matched" signal on a bit sequence
static void
pio_match_check(struct can2040 *cd, uint32_t match_key)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    pio_hw->txf[2] = match_key;
}

// Calculate pos+bits identifier for PIO "match" state machine
static uint32_t
pio_match_calc_key(uint32_t raw_bits, uint32_t rx_bit_pos)
{
    return (raw_bits & 0x1fffff) | ((-rx_bit_pos) << 21);
}

// Cancel any pending checks on PIO "match" state machine
static void
pio_match_clear(struct can2040 *cd)
{
    pio_match_check(cd, 0);
}

// Flush and halt PIO "tx" state machine
static void
pio_tx_reset(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    pio_hw->ctrl = ((0x07 << PIO_CTRL_SM_ENABLE_LSB)
                    | (0x08 << PIO_CTRL_SM_RESTART_LSB));
    pio_hw->irq = (SI_MATCHED | SI_ACKDONE) >> 8; // clear PIO irq flags
    // Clear tx fifo
    struct pio_sm_hw *sm = &pio_hw->sm[3];
    sm->shiftctrl = 0;
    sm->shiftctrl = (PIO_SM0_SHIFTCTRL_FJOIN_TX_BITS
                     | PIO_SM0_SHIFTCTRL_AUTOPULL_BITS);
    // Must reset again after clearing fifo
    pio_hw->ctrl = ((0x07 << PIO_CTRL_SM_ENABLE_LSB)
                    | (0x08 << PIO_CTRL_SM_RESTART_LSB));
}

// Queue a message for transmission on PIO "tx" state machine
static void
pio_tx_send(struct can2040 *cd, uint32_t *data, uint32_t count)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    pio_tx_reset(cd);
    pio_hw->instr_mem[can2040_offset_tx_got_recessive] = 0xa242; // nop [2]
    int i;
    for (i=0; i<count; i++)
        pio_hw->txf[3] = data[i];
    struct pio_sm_hw *sm = &pio_hw->sm[3];
    sm->instr = 0xe001; // set pins, 1
    sm->instr = can2040_offset_tx_start; // jmp tx_start
    sm->instr = 0x20c0; // wait 1 irq, 0
    pio_hw->ctrl = 0x0f << PIO_CTRL_SM_ENABLE_LSB;
}

// Set PIO "tx" state machine to inject an ack after a CRC match
static void
pio_tx_inject_ack(struct can2040 *cd, uint32_t match_key)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    pio_tx_reset(cd);
    pio_hw->instr_mem[can2040_offset_tx_got_recessive] = 0xc023; // irq wait 3
    pio_hw->txf[3] = 0x7fffffff;
    struct pio_sm_hw *sm = &pio_hw->sm[3];
    sm->instr = 0xe001; // set pins, 1
    sm->instr = can2040_offset_tx_start; // jmp tx_start
    sm->instr = 0x20c2; // wait 1 irq, 2
    pio_hw->ctrl = 0x0f << PIO_CTRL_SM_ENABLE_LSB;

    pio_match_check(cd, match_key);
}

// Did PIO "tx" state machine unexpectedly finish a transmit attempt?
static int
pio_tx_did_fail(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    // Check for passive/dominant bit conflict without parser noticing
    if (pio_hw->sm[3].addr == can2040_offset_tx_conflict)
        return !(pio_hw->intr & SI_RX_DATA);
    // Check for unexpected drain of transmit queue without parser noticing
    return (!(pio_hw->flevel & PIO_FLEVEL_TX3_BITS)
            && (pio_hw->intr & (SI_MAYTX | SI_RX_DATA)) == SI_MAYTX);
}

// Enable host irqs for state machine signals
static void
pio_irq_set(struct can2040 *cd, uint32_t sm_irqs)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    pio_hw->inte0 = sm_irqs | SI_RX_DATA;
}

// Return current host irq mask
static uint32_t
pio_irq_get(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    return pio_hw->inte0;
}

// Raise the txpending flag
static void
pio_signal_set_txpending(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    pio_hw->irq_force = SI_TXPENDING >> 8;
}

// Clear the txpending flag
static void
pio_signal_clear_txpending(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    pio_hw->irq = SI_TXPENDING >> 8;
}

// Setup PIO state machines
static void
pio_sm_setup(struct can2040 *cd)
{
    // Reset state machines
    pio_hw_t *pio_hw = cd->pio_hw;
    pio_hw->ctrl = PIO_CTRL_SM_RESTART_BITS | PIO_CTRL_CLKDIV_RESTART_BITS;
    pio_hw->fdebug = 0xffffffff;
    pio_hw->irq = 0xff;
    pio_signal_set_txpending(cd);

    // Load pio program
    int i;
    for (i=0; i<ARRAY_SIZE(can2040_program_instructions); i++)
        pio_hw->instr_mem[i] = can2040_program_instructions[i];

    // Set initial state machine state
    pio_sync_setup(cd);
    pio_rx_setup(cd);
    pio_match_setup(cd);
    pio_tx_setup(cd);

    // Start state machines
    pio_hw->ctrl = 0x07 << PIO_CTRL_SM_ENABLE_LSB;
}

// Initial setup of gpio pins and PIO state machines
static void
pio_setup(struct can2040 *cd, uint32_t sys_clock, uint32_t bitrate)
{
    // Configure pio0 clock
    uint32_t rb = cd->pio_num ? RESETS_RESET_PIO1_BITS : RESETS_RESET_PIO0_BITS;
    rp2040_clear_reset(rb);

    // Setup and sync pio state machine clocks
    pio_hw_t *pio_hw = cd->pio_hw;
    uint32_t div = (256 / PIO_CLOCK_PER_BIT) * sys_clock / bitrate;
    int i;
    for (i=0; i<4; i++)
        pio_hw->sm[i].clkdiv = div << PIO_SM0_CLKDIV_FRAC_LSB;

    // Configure state machines
    pio_sm_setup(cd);

    // Map Rx/Tx gpios
    uint32_t pio_func = cd->pio_num ? 7 : 6;
    rp2040_gpio_peripheral(cd->gpio_rx, pio_func, 1);
    rp2040_gpio_peripheral(cd->gpio_tx, pio_func, 0);
}


/****************************************************************
 * CRC calculation
 ****************************************************************/

// Calculated 8-bit crc table (see scripts/crc.py)
static const uint16_t crc_table[256] = {
    0x0000,0x4599,0x4eab,0x0b32,0x58cf,0x1d56,0x1664,0x53fd,0x7407,0x319e,
    0x3aac,0x7f35,0x2cc8,0x6951,0x6263,0x27fa,0x2d97,0x680e,0x633c,0x26a5,
    0x7558,0x30c1,0x3bf3,0x7e6a,0x5990,0x1c09,0x173b,0x52a2,0x015f,0x44c6,
    0x4ff4,0x0a6d,0x5b2e,0x1eb7,0x1585,0x501c,0x03e1,0x4678,0x4d4a,0x08d3,
    0x2f29,0x6ab0,0x6182,0x241b,0x77e6,0x327f,0x394d,0x7cd4,0x76b9,0x3320,
    0x3812,0x7d8b,0x2e76,0x6bef,0x60dd,0x2544,0x02be,0x4727,0x4c15,0x098c,
    0x5a71,0x1fe8,0x14da,0x5143,0x73c5,0x365c,0x3d6e,0x78f7,0x2b0a,0x6e93,
    0x65a1,0x2038,0x07c2,0x425b,0x4969,0x0cf0,0x5f0d,0x1a94,0x11a6,0x543f,
    0x5e52,0x1bcb,0x10f9,0x5560,0x069d,0x4304,0x4836,0x0daf,0x2a55,0x6fcc,
    0x64fe,0x2167,0x729a,0x3703,0x3c31,0x79a8,0x28eb,0x6d72,0x6640,0x23d9,
    0x7024,0x35bd,0x3e8f,0x7b16,0x5cec,0x1975,0x1247,0x57de,0x0423,0x41ba,
    0x4a88,0x0f11,0x057c,0x40e5,0x4bd7,0x0e4e,0x5db3,0x182a,0x1318,0x5681,
    0x717b,0x34e2,0x3fd0,0x7a49,0x29b4,0x6c2d,0x671f,0x2286,0x2213,0x678a,
    0x6cb8,0x2921,0x7adc,0x3f45,0x3477,0x71ee,0x5614,0x138d,0x18bf,0x5d26,
    0x0edb,0x4b42,0x4070,0x05e9,0x0f84,0x4a1d,0x412f,0x04b6,0x574b,0x12d2,
    0x19e0,0x5c79,0x7b83,0x3e1a,0x3528,0x70b1,0x234c,0x66d5,0x6de7,0x287e,
    0x793d,0x3ca4,0x3796,0x720f,0x21f2,0x646b,0x6f59,0x2ac0,0x0d3a,0x48a3,
    0x4391,0x0608,0x55f5,0x106c,0x1b5e,0x5ec7,0x54aa,0x1133,0x1a01,0x5f98,
    0x0c65,0x49fc,0x42ce,0x0757,0x20ad,0x6534,0x6e06,0x2b9f,0x7862,0x3dfb,
    0x36c9,0x7350,0x51d6,0x144f,0x1f7d,0x5ae4,0x0919,0x4c80,0x47b2,0x022b,
    0x25d1,0x6048,0x6b7a,0x2ee3,0x7d1e,0x3887,0x33b5,0x762c,0x7c41,0x39d8,
    0x32ea,0x7773,0x248e,0x6117,0x6a25,0x2fbc,0x0846,0x4ddf,0x46ed,0x0374,
    0x5089,0x1510,0x1e22,0x5bbb,0x0af8,0x4f61,0x4453,0x01ca,0x5237,0x17ae,
    0x1c9c,0x5905,0x7eff,0x3b66,0x3054,0x75cd,0x2630,0x63a9,0x689b,0x2d02,
    0x276f,0x62f6,0x69c4,0x2c5d,0x7fa0,0x3a39,0x310b,0x7492,0x5368,0x16f1,
    0x1dc3,0x585a,0x0ba7,0x4e3e,0x450c,0x0095
};

// Update a crc with 8 bits of data
static uint32_t
crc_byte(uint32_t crc, uint32_t data)
{
    return (crc << 8) ^ crc_table[((crc >> 7) ^ data) & 0xff];
}

// Update a crc with 8, 16, 24, or 32 bits of data
static inline uint32_t
crc_bytes(uint32_t crc, uint32_t data, uint32_t num)
{
    switch (num) {
    default: crc = crc_byte(crc, data >> 24);
    case 3:  crc = crc_byte(crc, data >> 16);
    case 2:  crc = crc_byte(crc, data >> 8);
    case 1:  crc = crc_byte(crc, data);
    }
    return crc;
}


/****************************************************************
 * Bit unstuffing
 ****************************************************************/

// Add 'count' number of bits from 'data' to the 'bu' unstuffer
static void
unstuf_add_bits(struct can2040_bitunstuffer *bu, uint32_t data, uint32_t count)
{
    uint32_t mask = (1 << count) - 1;
    bu->stuffed_bits = (bu->stuffed_bits << count) | (data & mask);
    bu->count_stuff = count;
}

// Reset state and set the next desired 'num_bits' unstuffed bits to extract
static void
unstuf_set_count(struct can2040_bitunstuffer *bu, uint32_t num_bits)
{
    bu->unstuffed_bits = 0;
    bu->count_unstuff = num_bits;
}

// Clear bitstuffing state (used after crc field to avoid bitstuffing ack field)
static void
unstuf_clear_state(struct can2040_bitunstuffer *bu)
{
    uint32_t lb = 1 << bu->count_stuff;
    bu->stuffed_bits = (bu->stuffed_bits & (lb - 1)) | (lb << 1);
}

// Restore raw bitstuffing state (used to undo unstuf_clear_state() )
static void
unstuf_restore_state(struct can2040_bitunstuffer *bu, uint32_t data)
{
    uint32_t cs = bu->count_stuff;
    bu->stuffed_bits = (bu->stuffed_bits & ((1 << cs) - 1)) | (data << cs);
}

// Pull bits from unstuffer (as specified in unstuf_set_count() )
static int
unstuf_pull_bits(struct can2040_bitunstuffer *bu)
{
    uint32_t sb = bu->stuffed_bits, edges = sb ^ (sb >> 1);
    uint32_t e2 = edges | (edges >> 1), e4 = e2 | (e2 >> 2), rm_bits = ~e4;
    uint32_t cs = bu->count_stuff, cu = bu->count_unstuff;
    if (!cs)
        // Need more data
        return 1;
    for (;;) {
        uint32_t try_cnt = cs > cu ? cu : cs;
        for (;;) {
            uint32_t try_mask = ((1 << try_cnt) - 1) << (cs + 1 - try_cnt);
            if (likely(!(rm_bits & try_mask))) {
                // No stuff bits in try_cnt bits - copy into unstuffed_bits
                bu->count_unstuff = cu = cu - try_cnt;
                bu->count_stuff = cs = cs - try_cnt;
                bu->unstuffed_bits |= ((sb >> cs) & ((1 << try_cnt) - 1)) << cu;
                if (! cu)
                    // Extracted desired bits
                    return 0;
                break;
            }
            bu->count_stuff = cs = cs - 1;
            if (rm_bits & (1 << (cs + 1))) {
                // High bit is a stuff bit
                if (unlikely(rm_bits & (1 << cs))) {
                    // Six consecutive bits - a bitstuff error
                    if (sb & (1 << cs))
                        return -1;
                    return -2;
                }
                break;
            }
            // High bit not a stuff bit - limit try_cnt and retry
            bu->count_unstuff = cu = cu - 1;
            bu->unstuffed_bits |= ((sb >> cs) & 1) << cu;
            try_cnt /= 2;
        }
        if (likely(!cs))
            // Need more data
            return 1;
    }
}

// Return most recent raw (still stuffed) bits
static uint32_t
unstuf_get_raw(struct can2040_bitunstuffer *bu)
{
    return bu->stuffed_bits >> bu->count_stuff;
}


/****************************************************************
 * Bit stuffing
 ****************************************************************/

// Stuff 'num_bits' bits in '*pb' - upper bits must already be stuffed
static uint32_t
bitstuff(uint32_t *pb, uint32_t num_bits)
{
    uint32_t b = *pb, count = num_bits;
    for (;;) {
        uint32_t try_cnt = num_bits, edges = b ^ (b >> 1);
        uint32_t e2 = edges | (edges >> 1), e4 = e2 | (e2 >> 2), add_bits = ~e4;
        for (;;) {
            uint32_t try_mask = ((1 << try_cnt) - 1) << (num_bits - try_cnt);
            if (!(add_bits & try_mask)) {
                // No stuff bits needed in try_cnt bits
                if (try_cnt >= num_bits)
                    goto done;
                num_bits -= try_cnt;
                try_cnt = (num_bits + 1) / 2;
                continue;
            }
            if (add_bits & (1 << (num_bits - 1))) {
                // A stuff bit must be inserted prior to the high bit
                uint32_t low_mask = (1 << num_bits) - 1, low = b & low_mask;
                uint32_t high = (b & ~(low_mask >> 1)) << 1;
                b = high ^ low ^ (1 << (num_bits - 1));
                count += 1;
                if (num_bits <= 4)
                    goto done;
                num_bits -= 4;
                break;
            }
            // High bit doesn't need stuff bit - accept it, limit try_cnt, retry
            num_bits--;
            try_cnt /= 2;
        }
    }
done:
    *pb = b;
    return count;
}

// State storage for building bit stuffed transmit messages
struct bitstuffer_s {
    uint32_t prev_stuffed, bitpos, *buf;
};

// Push 'count' bits of 'data' into stuffer without performing bit stuffing
static void
bs_pushraw(struct bitstuffer_s *bs, uint32_t data, uint32_t count)
{
    uint32_t bitpos = bs->bitpos;
    uint32_t wp = bitpos / 32, bitused = bitpos % 32, bitavail = 32 - bitused;
    uint32_t *fb = &bs->buf[wp];
    if (bitavail >= count) {
        fb[0] |= data << (bitavail - count);
    } else {
        fb[0] |= data >> (count - bitavail);
        fb[1] |= data << (32 - (count - bitavail));
    }
    bs->bitpos = bitpos + count;
}

// Push 'count' bits of 'data' into stuffer
static void
bs_push(struct bitstuffer_s *bs, uint32_t data, uint32_t count)
{
    data &= (1 << count) - 1;
    uint32_t stuf = (bs->prev_stuffed << count) | data;
    uint32_t newcount = bitstuff(&stuf, count);
    bs_pushraw(bs, stuf, newcount);
    bs->prev_stuffed = stuf;
}

// Pad final word of stuffer with high bits
static uint32_t
bs_finalize(struct bitstuffer_s *bs)
{
    uint32_t bitpos = bs->bitpos;
    uint32_t words = DIV_ROUND_UP(bitpos, 32);
    uint32_t extra = words * 32 - bitpos;
    if (extra)
        bs->buf[words - 1] |= (1 << extra) - 1;
    return words;
}


/****************************************************************
 * Transmit state tracking
 ****************************************************************/

// Transmit states (stored in cd->tx_state)
enum {
    TS_IDLE = 0, TS_QUEUED = 1, TS_ACKING_RX = 2, TS_CONFIRM_TX = 3
};

// Calculate queue array position from a transmit index
static uint32_t
tx_qpos(struct can2040 *cd, uint32_t pos)
{
    return pos % ARRAY_SIZE(cd->tx_queue);
}

// Queue the next message for transmission in the PIO
static uint32_t
tx_schedule_transmit(struct can2040 *cd)
{
    if (cd->tx_state == TS_QUEUED && !pio_tx_did_fail(cd))
        // Already queued or actively transmitting
        return 0;
    if (cd->tx_push_pos == cd->tx_pull_pos) {
        // No new messages to transmit
        cd->tx_state = TS_IDLE;
        pio_signal_clear_txpending(cd);
        return SI_TXPENDING;
    }
    cd->tx_state = TS_QUEUED;
    struct can2040_transmit *qt = &cd->tx_queue[tx_qpos(cd, cd->tx_pull_pos)];
    pio_tx_send(cd, qt->stuffed_data, qt->stuffed_words);
    return 0;
}

// Setup PIO state for ack injection
static void
tx_inject_ack(struct can2040 *cd, uint32_t match_key)
{
    cd->tx_state = TS_ACKING_RX;
    pio_tx_inject_ack(cd, match_key);
}

// Check if the current parsed message is feedback from current transmit
static int
tx_check_local_message(struct can2040 *cd)
{
    if (cd->tx_state != TS_QUEUED)
        return 0;
    struct can2040_transmit *qt = &cd->tx_queue[tx_qpos(cd, cd->tx_pull_pos)];
    struct can2040_msg *pm = &cd->parse_msg, *tm = &qt->msg;
    if (qt->crc == cd->parse_crc && tm->id == pm->id && tm->dlc == pm->dlc
        && tm->data32[0] == pm->data32[0] && tm->data32[1] == pm->data32[1]) {
        // This is a self transmit
        cd->tx_state = TS_CONFIRM_TX;
        return 1;
    }
    return 0;
}


/****************************************************************
 * Notification callbacks
 ****************************************************************/

// Report state flags (stored in cd->report_state)
enum {
    RS_NEED_EOF_FLAG = 1<<2,
    // States
    RS_IDLE = 0, RS_NEED_RX_ACK = 1, RS_NEED_TX_ACK = 2,
    RS_NEED_RX_EOF = RS_NEED_RX_ACK | RS_NEED_EOF_FLAG,
    RS_NEED_TX_EOF = RS_NEED_TX_ACK | RS_NEED_EOF_FLAG,
};

// Report error to calling code (via callback interface)
static void
report_callback_error(struct can2040 *cd, uint32_t error_code)
{
    struct can2040_msg msg = {};
    cd->rx_cb(cd, CAN2040_NOTIFY_ERROR | error_code, &msg);
}

// Report a received message to calling code (via callback interface)
static void
report_callback_rx_msg(struct can2040 *cd)
{
    cd->rx_cb(cd, CAN2040_NOTIFY_RX, &cd->parse_msg);
}

// Report a message that was successfully transmited (via callback interface)
static void
report_callback_tx_msg(struct can2040 *cd)
{
    cd->tx_pull_pos++;
    cd->rx_cb(cd, CAN2040_NOTIFY_TX, &cd->parse_msg);
}

// EOF phase complete - report message (rx or tx) to calling code
static void
report_handle_eof(struct can2040 *cd)
{
    if (cd->report_state & RS_NEED_EOF_FLAG) { // RS_NEED_xX_EOF
        // Successfully processed a new message - report to calling code
        pio_sync_normal_start_signal(cd);
        if (cd->report_state == RS_NEED_TX_EOF)
            report_callback_tx_msg(cd);
        else
            report_callback_rx_msg(cd);
    }
    cd->report_state = RS_IDLE;
    pio_match_clear(cd);
}

// Check if in an rx message is being processed
static int
report_is_rx_eof_pending(struct can2040 *cd)
{
    return cd->report_state == RS_NEED_RX_EOF;
}

// Parser found a new message start
static void
report_note_message_start(struct can2040 *cd)
{
    pio_irq_set(cd, SI_MAYTX);
}

// Setup for ack injection (if receiving) or ack confirmation (if transmit)
static void
report_note_crc_start(struct can2040 *cd)
{
    int ret = tx_check_local_message(cd);
    if (ret) {
        // This is a self transmit - setup tx eof "matched" signal
        cd->report_state = RS_NEED_TX_ACK;
        uint32_t bits = (cd->parse_crc_bits << 9) | 0x0ff;
        pio_match_check(cd, pio_match_calc_key(bits, cd->parse_crc_pos + 9));
        return;
    }

    // Setup for ack inject (after rx fifos fully drained)
    cd->report_state = RS_NEED_RX_ACK;
    pio_signal_set_txpending(cd);
    pio_irq_set(cd, SI_MAYTX | SI_TXPENDING);
}

// Parser successfully found matching crc
static void
report_note_crc_success(struct can2040 *cd)
{
    if (cd->report_state == RS_NEED_TX_ACK)
        // Enable "matched" irq for fast back-to-back transmit scheduling
        pio_irq_set(cd, SI_MAYTX | SI_MATCHED);
}

// Parser found successful ack
static void
report_note_ack_success(struct can2040 *cd)
{
    if (cd->report_state == RS_IDLE)
        // Got "matched" signal already
        return;
    // Transition RS_NEED_xX_ACK to RS_NEED_xX_EOF
    cd->report_state |= RS_NEED_EOF_FLAG;
}

// Parser found successful EOF
static void
report_note_eof_success(struct can2040 *cd)
{
    if (cd->report_state == RS_IDLE)
        // Got "matched" signal already
        return;
    report_handle_eof(cd);
    pio_irq_set(cd, SI_TXPENDING);
}

// Parser found unexpected data on input
static void
report_note_parse_error(struct can2040 *cd)
{
    if (cd->report_state != RS_IDLE) {
        cd->report_state = RS_IDLE;
        pio_match_clear(cd);
    }
    pio_sync_slow_start_signal(cd);
    pio_irq_set(cd, SI_MAYTX | SI_TXPENDING);
}

// Received PIO rx "ackdone" irq
static void
report_line_ackdone(struct can2040 *cd)
{
    // Setup "matched" irq for fast rx callbacks
    uint32_t bits = (cd->parse_crc_bits << 8) | 0x7f;
    pio_match_check(cd, pio_match_calc_key(bits, cd->parse_crc_pos + 8));
    // Schedule next transmit (so it is ready for next frame line arbitration)
    uint32_t check_txpending = tx_schedule_transmit(cd);
    pio_irq_set(cd, SI_MAYTX | SI_MATCHED | check_txpending);
}

// Received PIO "matched" irq
static void
report_line_matched(struct can2040 *cd)
{
    // A match event indicates an ack and eof are present
    if (cd->report_state != RS_IDLE) {
        // Transition RS_NEED_xX_ACK to RS_NEED_xX_EOF (if not already there)
        cd->report_state |= RS_NEED_EOF_FLAG;
        report_handle_eof(cd);
    }
    // Implement fast back-to-back tx scheduling (if applicable)
    uint32_t check_txpending = tx_schedule_transmit(cd);
    pio_irq_set(cd, check_txpending);
}

// Received 10+ passive bits on the line (between 10 and 17 bits)
static void
report_line_maytx(struct can2040 *cd)
{
    // Line is idle - may be unexpected EOF, missed ack injection,
    // or missed "matched" signal.
    if (cd->report_state != RS_IDLE)
        report_handle_eof(cd);
    uint32_t check_txpending = tx_schedule_transmit(cd);
    pio_irq_set(cd, check_txpending);
}

// Schedule a transmit
static void
report_line_txpending(struct can2040 *cd)
{
    if (cd->report_state == RS_NEED_RX_ACK) {
        // Ack inject request from report_note_crc_start()
        uint32_t mk = pio_match_calc_key(cd->parse_crc_bits, cd->parse_crc_pos);
        tx_inject_ack(cd, mk);
        pio_irq_set(cd, SI_MAYTX | SI_ACKDONE);
        return;
    }
    // Tx request from can2040_transmit(), report_note_eof_success(),
    // or report_note_parse_error().
    uint32_t check_txpending = tx_schedule_transmit(cd);
    pio_irq_set(cd, (pio_irq_get(cd) & ~SI_TXPENDING) | check_txpending);
}


/****************************************************************
 * Input state tracking
 ****************************************************************/

// Parsing states (stored in cd->parse_state)
enum {
    MS_START, MS_HEADER, MS_EXT_HEADER, MS_DATA0, MS_DATA1,
    MS_CRC, MS_ACK, MS_EOF0, MS_EOF1, MS_DISCARD
};

// Transition to the next parsing state
static void
data_state_go_next(struct can2040 *cd, uint32_t state, uint32_t num_bits)
{
    cd->parse_state = state;
    unstuf_set_count(&cd->unstuf, num_bits);
}

// Transition to the MS_DISCARD state - drop all bits until 6 passive bits
static void
data_state_go_discard(struct can2040 *cd)
{
    report_note_parse_error(cd);

    if (pio_rx_check_stall(cd)) {
        // CPU couldn't keep up for some read data - must reset pio state
        cd->raw_bit_count = cd->unstuf.count_stuff = 0;
        pio_sm_setup(cd);
        report_callback_error(cd, 0);
    }

    data_state_go_next(cd, MS_DISCARD, 32);
}

// Received six dominant bits on the line
static void
data_state_line_error(struct can2040 *cd)
{
    data_state_go_discard(cd);
}

// Received six unexpected passive bits on the line
static void
data_state_line_passive(struct can2040 *cd)
{
    if (cd->parse_state != MS_DISCARD && cd->parse_state != MS_START) {
        // Bitstuff error
        data_state_go_discard(cd);
        return;
    }

    uint32_t stuffed_bits = unstuf_get_raw(&cd->unstuf);
    uint32_t dom_bits = ~stuffed_bits;
    if (!dom_bits) {
        // Counter overflow in "sync" state machine - reset it
        cd->unstuf.stuffed_bits = 0;
        cd->raw_bit_count = cd->unstuf.count_stuff = 0;
        pio_sm_setup(cd);
        data_state_go_discard(cd);
        return;
    }

    // Look for sof after 10 passive bits (most "PIO sync" will produce)
    if (!(dom_bits & 0x3ff)) {
        data_state_go_next(cd, MS_START, 1);
        return;
    }

    data_state_go_discard(cd);
}

// Transition to MS_CRC state - await 16 bits of crc
static void
data_state_go_crc(struct can2040 *cd)
{
    cd->parse_crc &= 0x7fff;

    // Calculate raw stuffed bits after crc and crc delimiter
    uint32_t crcstart_bitpos = cd->raw_bit_count - cd->unstuf.count_stuff - 1;
    uint32_t crc_bits = (unstuf_get_raw(&cd->unstuf) << 15) | cd->parse_crc;
    uint32_t crc_bitcount = bitstuff(&crc_bits, 15 + 1) - 1;
    cd->parse_crc_bits = (crc_bits << 1) | 0x01; // Add crc delimiter
    cd->parse_crc_pos = crcstart_bitpos + crc_bitcount + 1;

    report_note_crc_start(cd);
    data_state_go_next(cd, MS_CRC, 16);
}

// Transition to MS_DATA0 state (if applicable) - await data bits
static void
data_state_go_data(struct can2040 *cd, uint32_t id, uint32_t data)
{
    if (data & (0x03 << 4)) {
        // Not a supported header
        data_state_go_discard(cd);
        return;
    }
    cd->parse_msg.data32[0] = cd->parse_msg.data32[1] = 0;
    uint32_t dlc = data & 0x0f;
    cd->parse_msg.dlc = dlc;
    if (data & (1 << 6)) {
        dlc = 0;
        id |= CAN2040_ID_RTR;
    }
    cd->parse_msg.id = id;
    if (dlc)
        data_state_go_next(cd, MS_DATA0, dlc >= 4 ? 32 : dlc * 8);
    else
        data_state_go_crc(cd);
}

// Handle reception of first bit of header (after start-of-frame (SOF))
static void
data_state_update_start(struct can2040 *cd, uint32_t data)
{
    cd->parse_msg.id = data;
    report_note_message_start(cd);
    data_state_go_next(cd, MS_HEADER, 17);
}

// Handle reception of next 17 header bits
static void
data_state_update_header(struct can2040 *cd, uint32_t data)
{
    data |= cd->parse_msg.id << 17;
    if ((data & 0x60) == 0x60) {
        // Extended header
        cd->parse_msg.id = data;
        data_state_go_next(cd, MS_EXT_HEADER, 20);
        return;
    }
    cd->parse_crc = crc_bytes(0, data, 3);
    data_state_go_data(cd, (data >> 7) & 0x7ff, data);
}

// Handle reception of additional 20 bits of "extended header"
static void
data_state_update_ext_header(struct can2040 *cd, uint32_t data)
{
    uint32_t hdr1 = cd->parse_msg.id;
    uint32_t crc = crc_bytes(0, hdr1 >> 4, 2);
    cd->parse_crc = crc_bytes(crc, ((hdr1 & 0x0f) << 20) | data, 3);
    uint32_t id = (((hdr1 << 11) & 0x1ffc0000) | ((hdr1 << 13) & 0x3e000)
                   | (data >> 7) | CAN2040_ID_EFF);
    data_state_go_data(cd, id, data);
}

// Handle reception of first 1-4 bytes of data content
static void
data_state_update_data0(struct can2040 *cd, uint32_t data)
{
    uint32_t dlc = cd->parse_msg.dlc, bits = dlc >= 4 ? 32 : dlc * 8;
    cd->parse_crc = crc_bytes(cd->parse_crc, data, dlc);
    cd->parse_msg.data32[0] = __builtin_bswap32(data << (32 - bits));
    if (dlc > 4)
        data_state_go_next(cd, MS_DATA1, dlc >= 8 ? 32 : (dlc - 4) * 8);
    else
        data_state_go_crc(cd);
}

// Handle reception of bytes 5-8 of data content
static void
data_state_update_data1(struct can2040 *cd, uint32_t data)
{
    uint32_t dlc = cd->parse_msg.dlc, bits = dlc >= 8 ? 32 : (dlc - 4) * 8;
    cd->parse_crc = crc_bytes(cd->parse_crc, data, dlc - 4);
    cd->parse_msg.data32[1] = __builtin_bswap32(data << (32 - bits));
    data_state_go_crc(cd);
}

// Handle reception of 16 bits of message CRC (15 crc bits + crc delimiter)
static void
data_state_update_crc(struct can2040 *cd, uint32_t data)
{
    if (((cd->parse_crc << 1) | 1) != data) {
        data_state_go_discard(cd);
        return;
    }

    report_note_crc_success(cd);
    unstuf_clear_state(&cd->unstuf);
    data_state_go_next(cd, MS_ACK, 2);
}

// Handle reception of 2 bits of ack phase (ack, ack delimiter)
static void
data_state_update_ack(struct can2040 *cd, uint32_t data)
{
    if (data != 0x01) {
        // Undo unstuf_clear_state() for correct SOF detection in
        // data_state_line_passive()
        unstuf_restore_state(&cd->unstuf, (cd->parse_crc_bits << 2) | data);

        data_state_go_discard(cd);
        return;
    }
    report_note_ack_success(cd);
    data_state_go_next(cd, MS_EOF0, 4);
}

// Handle reception of first four end-of-frame (EOF) bits
static void
data_state_update_eof0(struct can2040 *cd, uint32_t data)
{
    if (data != 0x0f || pio_rx_check_stall(cd)) {
        data_state_go_discard(cd);
        return;
    }
    unstuf_clear_state(&cd->unstuf);
    data_state_go_next(cd, MS_EOF1, 5);
}

// Handle reception of end-of-frame (EOF) bits 5-7 and first two IFS bits
static void
data_state_update_eof1(struct can2040 *cd, uint32_t data)
{
    if (data >= 0x1c || (data >= 0x18 && report_is_rx_eof_pending(cd)))
        // Message is considered fully transmitted
        report_note_eof_success(cd);

    if (data == 0x1f)
        data_state_go_next(cd, MS_START, 1);
    else
        data_state_go_discard(cd);
}

// Handle data received while in MS_DISCARD state
static void
data_state_update_discard(struct can2040 *cd, uint32_t data)
{
    data_state_go_discard(cd);
}

// Update parsing state after reading the bits of the current field
static void
data_state_update(struct can2040 *cd, uint32_t data)
{
    switch (cd->parse_state) {
    case MS_START: data_state_update_start(cd, data); break;
    case MS_HEADER: data_state_update_header(cd, data); break;
    case MS_EXT_HEADER: data_state_update_ext_header(cd, data); break;
    case MS_DATA0: data_state_update_data0(cd, data); break;
    case MS_DATA1: data_state_update_data1(cd, data); break;
    case MS_CRC: data_state_update_crc(cd, data); break;
    case MS_ACK: data_state_update_ack(cd, data); break;
    case MS_EOF0: data_state_update_eof0(cd, data); break;
    case MS_EOF1: data_state_update_eof1(cd, data); break;
    case MS_DISCARD: data_state_update_discard(cd, data); break;
    }
}


/****************************************************************
 * Input processing
 ****************************************************************/

// Process incoming data from PIO "rx" state machine
static void
process_rx(struct can2040 *cd, uint32_t rx_data)
{
    unstuf_add_bits(&cd->unstuf, rx_data, PIO_RX_WAKE_BITS);
    cd->raw_bit_count += PIO_RX_WAKE_BITS;

    // undo bit stuffing
    for (;;) {
        int ret = unstuf_pull_bits(&cd->unstuf);
        if (likely(ret > 0)) {
            // Need more data
            break;
        } else if (likely(!ret)) {
            // Pulled the next field - process it
            data_state_update(cd, cd->unstuf.unstuffed_bits);
        } else {
            if (ret == -1)
                // 6 consecutive high bits
                data_state_line_passive(cd);
            else
                // 6 consecutive low bits
                data_state_line_error(cd);
        }
    }
}

// Main API irq notification function
void
can2040_pio_irq_handler(struct can2040 *cd)
{
    pio_hw_t *pio_hw = cd->pio_hw;
    uint32_t ints = pio_hw->ints0;
    while (likely(ints & SI_RX_DATA)) {
        uint32_t rx_data = pio_hw->rxf[1];
        process_rx(cd, rx_data);
        ints = pio_hw->ints0;
        if (likely(!ints))
            return;
    }

    if (ints & SI_ACKDONE)
        // Ack of received message completed successfully
        report_line_ackdone(cd);
    else if (ints & SI_MATCHED)
        // Transmit message completed successfully
        report_line_matched(cd);
    else if (ints & SI_MAYTX)
        // Bus is idle, but not all bits may have been flushed yet
        report_line_maytx(cd);
    else if (ints & SI_TXPENDING)
        // Schedule a transmit
        report_line_txpending(cd);
}


/****************************************************************
 * Transmit queuing
 ****************************************************************/

// API function to check if transmit space available
int
can2040_check_transmit(struct can2040 *cd)
{
    uint32_t tx_pull_pos = readl(&cd->tx_pull_pos);
    uint32_t tx_push_pos = cd->tx_push_pos;
    uint32_t pending = tx_push_pos - tx_pull_pos;
    return pending < ARRAY_SIZE(cd->tx_queue);
}

// API function to transmit a message
int
can2040_transmit(struct can2040 *cd, struct can2040_msg *msg)
{
    uint32_t tx_pull_pos = readl(&cd->tx_pull_pos);
    uint32_t tx_push_pos = cd->tx_push_pos;
    uint32_t pending = tx_push_pos - tx_pull_pos;
    if (pending >= ARRAY_SIZE(cd->tx_queue))
        // Tx queue full
        return -1;

    // Copy msg into transmit queue
    struct can2040_transmit *qt = &cd->tx_queue[tx_qpos(cd, tx_push_pos)];
    uint32_t id = msg->id;
    if (id & CAN2040_ID_EFF)
        qt->msg.id = id & ~0x20000000;
    else
        qt->msg.id = id & (CAN2040_ID_RTR | 0x7ff);
    qt->msg.dlc = msg->dlc & 0x0f;
    uint32_t data_len = qt->msg.dlc > 8 ? 8 : qt->msg.dlc;
    if (qt->msg.id & CAN2040_ID_RTR)
        data_len = 0;
    qt->msg.data32[0] = qt->msg.data32[1] = 0;
    memcpy(qt->msg.data, msg->data, data_len);

    // Calculate crc and stuff bits
    uint32_t crc = 0;
    memset(qt->stuffed_data, 0, sizeof(qt->stuffed_data));
    struct bitstuffer_s bs = { 1, 0, qt->stuffed_data };
    uint32_t edlc = qt->msg.dlc | (qt->msg.id & CAN2040_ID_RTR ? 0x40 : 0);
    if (qt->msg.id & CAN2040_ID_EFF) {
        // Extended header
        uint32_t id = qt->msg.id;
        uint32_t h1 = ((id & 0x1ffc0000) >> 11) | 0x60 | ((id & 0x3e000) >> 13);
        uint32_t h2 = ((id & 0x1fff) << 7) | edlc;
        crc = crc_bytes(crc, h1 >> 4, 2);
        crc = crc_bytes(crc, ((h1 & 0x0f) << 20) | h2, 3);
        bs_push(&bs, h1, 19);
        bs_push(&bs, h2, 20);
    } else {
        // Standard header
        uint32_t hdr = ((qt->msg.id & 0x7ff) << 7) | edlc;
        crc = crc_bytes(crc, hdr, 3);
        bs_push(&bs, hdr, 19);
    }
    int i;
    for (i=0; i<data_len; i++) {
        uint32_t v = qt->msg.data[i];
        crc = crc_byte(crc, v);
        bs_push(&bs, v, 8);
    }
    qt->crc = crc & 0x7fff;
    bs_push(&bs, qt->crc, 15);
    bs_pushraw(&bs, 1, 1);
    qt->stuffed_words = bs_finalize(&bs);

    // Submit
    writel(&cd->tx_push_pos, tx_push_pos + 1);

    // Wakeup if in TS_IDLE state
    pio_signal_set_txpending(cd);

    return 0;
}


/****************************************************************
 * Setup
 ****************************************************************/

// API function to initialize can2040 code
void
can2040_setup(struct can2040 *cd, uint32_t pio_num)
{
    memset(cd, 0, sizeof(*cd));
    cd->pio_num = !!pio_num;
    cd->pio_hw = cd->pio_num ? pio1_hw : pio0_hw;
}

// API function to configure callback
void
can2040_callback_config(struct can2040 *cd, can2040_rx_cb rx_cb)
{
    cd->rx_cb = rx_cb;
}

// API function to start CANbus interface
void
can2040_start(struct can2040 *cd, uint32_t sys_clock, uint32_t bitrate
              , uint32_t gpio_rx, uint32_t gpio_tx)
{
    cd->gpio_rx = gpio_rx;
    cd->gpio_tx = gpio_tx;
    pio_setup(cd, sys_clock, bitrate);
    data_state_go_discard(cd);
}

// API function to stop and uninitialize can2040 code
void
can2040_shutdown(struct can2040 *cd)
{
    // XXX
}