aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/toolhead.py
blob: 922749ec9fc0deda58bf42b3446924b979b5f8e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Code for coordinating events on the printer toolhead
#
# Copyright (C) 2016  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging, time
import cartesian, delta

EXTRUDE_DIFF_IGNORE = 1.02

# Common suffixes: _d is distance (in mm), _v is velocity (in
#   mm/second), _t is time (in seconds), _r is ratio (scalar between
#   0.0 and 1.0)

# Class to track each move request
class Move:
    def __init__(self, toolhead, start_pos, end_pos, speed, accel):
        self.toolhead = toolhead
        self.start_pos = tuple(start_pos)
        self.end_pos = tuple(end_pos)
        self.accel = accel
        self.do_calc_junction = self.is_kinematic_move = True
        self.axes_d = axes_d = [end_pos[i] - start_pos[i] for i in (0, 1, 2, 3)]
        if axes_d[2]:
            # Move with Z
            move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
            self.do_calc_junction = False
        else:
            move_d = math.sqrt(axes_d[0]**2 + axes_d[1]**2)
            if not move_d:
                # Extrude only move
                move_d = abs(axes_d[3])
                if not move_d:
                    # No move
                    self.move_d = 0.
                    return
                self.do_calc_junction = self.is_kinematic_move = False
        self.move_d = move_d
        self.extrude_r = axes_d[3] / move_d
        # Junction speeds are velocities squared.  The junction_delta
        # is the maximum amount of this squared-velocity that can
        # change in this move.
        self.junction_max = speed**2
        self.junction_delta = 2.0 * move_d * accel
        self.junction_start_max = 0.
    def limit_speed(self, speed, accel):
        self.junction_max = min(self.junction_max, speed**2)
        self.accel = min(self.accel, accel)
        self.junction_delta = 2.0 * self.move_d * self.accel
    def calc_junction(self, prev_move):
        if not self.do_calc_junction or not prev_move.do_calc_junction:
            return
        # Find max junction_start_velocity between two moves
        if (self.extrude_r > prev_move.extrude_r * EXTRUDE_DIFF_IGNORE
            or prev_move.extrude_r > self.extrude_r * EXTRUDE_DIFF_IGNORE):
            # Extrude ratio between moves is too different
            return
        self.extrude_r = prev_move.extrude_r
        # Find max velocity using approximated centripetal velocity as
        # described at:
        # https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/
        junction_cos_theta = -((self.axes_d[0] * prev_move.axes_d[0]
                                + self.axes_d[1] * prev_move.axes_d[1])
                               / (self.move_d * prev_move.move_d))
        if junction_cos_theta > 0.999999:
            return
        junction_cos_theta = max(junction_cos_theta, -0.999999)
        sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta))
        R = self.toolhead.junction_deviation * sin_theta_d2 / (1. - sin_theta_d2)
        self.junction_start_max = min(
            R * self.accel, self.junction_max, prev_move.junction_max
            , prev_move.junction_start_max + prev_move.junction_delta)
    def process(self, junction_start, junction_cruise, junction_end
                , cornering_min, cornering_max):
        # Determine accel, cruise, and decel portions of the move distance
        inv_junction_delta = 1. / self.junction_delta
        accel_r = (junction_cruise-junction_start) * inv_junction_delta
        decel_r = (junction_cruise-junction_end) * inv_junction_delta
        cruise_r = 1. - accel_r - decel_r
        self.accel_r, self.cruise_r, self.decel_r = accel_r, cruise_r, decel_r
        # Determine move velocities
        start_v = math.sqrt(junction_start)
        cruise_v = math.sqrt(junction_cruise)
        end_v = math.sqrt(junction_end)
        self.start_v, self.cruise_v, self.end_v = start_v, cruise_v, end_v
        self.corner_min = math.sqrt(cornering_min)
        self.corner_max = math.sqrt(cornering_max)
        # Determine time spent in each portion of move (time is the
        # distance divided by average velocity)
        accel_t = accel_r * self.move_d / ((start_v + cruise_v) * 0.5)
        cruise_t = cruise_r * self.move_d / cruise_v
        decel_t = decel_r * self.move_d / ((end_v + cruise_v) * 0.5)
        self.accel_t, self.cruise_t, self.decel_t = accel_t, cruise_t, decel_t
        # Generate step times for the move
        next_move_time = self.toolhead.get_next_move_time()
        if self.is_kinematic_move:
            self.toolhead.kin.move(next_move_time, self)
        if self.axes_d[3]:
            self.toolhead.extruder.move(next_move_time, self)
        self.toolhead.update_move_time(accel_t + cruise_t + decel_t)

# Class to track a list of pending move requests and to facilitate
# "look-ahead" across moves to reduce acceleration between moves.
class MoveQueue:
    def __init__(self):
        self.queue = []
        self.junction_flush = 0.
    def reset(self):
        del self.queue[:]
    def flush(self, lazy=False):
        flush_count = len(self.queue)
        move_info = [None] * flush_count
        # Traverse queue from last to first move and determine maximum
        # junction speed assuming the robot comes to a complete stop
        # after the last move.
        next_junction_end = cornering_min = cornering_max = 0.
        for i in range(flush_count-1, -1, -1):
            move = self.queue[i]
            reachable_start = next_junction_end + move.junction_delta
            junction_start = min(move.junction_start_max, reachable_start)
            junction_cruise = min((junction_start + reachable_start) * .5
                                  , move.junction_max)
            move_info[i] = (junction_start, junction_cruise, next_junction_end
                            , cornering_min, cornering_max)
            if reachable_start > junction_start:
                cornering_min = junction_start
                if junction_start + move.junction_delta > next_junction_end:
                    cornering_max = junction_cruise
                    if lazy:
                        flush_count = i
                        lazy = False
            next_junction_end = junction_start
        if lazy:
            flush_count = 0
        # Generate step times for all moves ready to be flushed
        for i in range(flush_count):
            self.queue[i].process(*move_info[i])
        # Remove processed moves from the queue
        del self.queue[:flush_count]
        if self.queue:
            self.junction_flush = 2. * self.queue[-1].junction_max
    def add_move(self, move):
        self.queue.append(move)
        if len(self.queue) == 1:
            self.junction_flush = 2. * move.junction_max
            return
        move.calc_junction(self.queue[-2])
        self.junction_flush -= move.junction_delta
        if self.junction_flush <= 0.:
            # There are enough queued moves to return to zero velocity
            # from the first move's maximum possible velocity, so at
            # least one move can be flushed.
            self.flush(lazy=True)

STALL_TIME = 0.100

# Main code to track events (and their timing) on the printer toolhead
class ToolHead:
    def __init__(self, printer, config):
        self.printer = printer
        self.reactor = printer.reactor
        self.extruder = printer.objects.get('extruder')
        kintypes = {'cartesian': cartesian.CartKinematics,
                    'delta': delta.DeltaKinematics}
        self.kin = config.getchoice('kinematics', kintypes)(printer, config)
        self.max_speed = config.getfloat('max_velocity')
        self.max_accel = config.getfloat('max_accel')
        self.junction_deviation = config.getfloat('junction_deviation', 0.02)
        self.move_queue = MoveQueue()
        self.commanded_pos = [0., 0., 0., 0.]
        # Print time tracking
        self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
        self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
        self.move_flush_time = config.getfloat('move_flush_time', 0.050)
        self.motor_off_delay = config.getfloat('motor_off_time', 60.000)
        self.print_time = 0.
        self.need_check_stall = -1.
        self.print_time_stall = 0
        self.motor_off_time = self.reactor.NEVER
        self.flush_timer = self.reactor.register_timer(self._flush_handler)
    def build_config(self):
        xy_halt = 0.005 * self.max_accel # XXX
        self.kin.set_max_jerk(xy_halt, self.max_speed, self.max_accel)
        if self.extruder is not None:
            self.extruder.set_max_jerk(xy_halt, self.max_speed, self.max_accel)
        self.kin.build_config()
    # Print time tracking
    def update_move_time(self, movetime):
        self.print_time += movetime
        flush_to_time = self.print_time - self.move_flush_time
        self.printer.mcu.flush_moves(flush_to_time)
    def get_next_move_time(self):
        if not self.print_time:
            self.print_time = self.buffer_time_low + STALL_TIME
            curtime = time.time()
            self.printer.mcu.set_print_start_time(curtime)
            self.reactor.update_timer(self.flush_timer, self.reactor.NOW)
        return self.print_time
    def get_last_move_time(self):
        self.move_queue.flush()
        return self.get_next_move_time()
    def reset_motor_off_time(self, eventtime):
        self.motor_off_time = eventtime + self.motor_off_delay
    def reset_print_time(self):
        self.move_queue.flush()
        self.printer.mcu.flush_moves(self.print_time)
        self.print_time = 0.
        self.need_check_stall = -1.
        self.reset_motor_off_time(time.time())
        self.reactor.update_timer(self.flush_timer, self.motor_off_time)
    def _check_stall(self):
        if not self.print_time:
            # XXX - find better way to flush initial move_queue items
            if self.move_queue.queue:
                self.reactor.update_timer(self.flush_timer, time.time() + 0.100)
            return
        eventtime = time.time()
        while 1:
            buffer_time = self.printer.mcu.get_print_buffer_time(
                eventtime, self.print_time)
            stall_time = buffer_time - self.buffer_time_high
            if stall_time <= 0.:
                break
            eventtime = self.reactor.pause(eventtime + stall_time)
            if not self.print_time:
                return
        self.need_check_stall = self.print_time - stall_time + 0.100
    def _flush_handler(self, eventtime):
        try:
            if not self.print_time:
                self.move_queue.flush()
                if not self.print_time:
                    if eventtime >= self.motor_off_time:
                        self.motor_off()
                        self.reset_print_time()
                        self.motor_off_time = self.reactor.NEVER
                    return self.motor_off_time
            print_time = self.print_time
            buffer_time = self.printer.mcu.get_print_buffer_time(
                eventtime, print_time)
            if buffer_time > self.buffer_time_low:
                return eventtime + buffer_time - self.buffer_time_low
            self.move_queue.flush()
            if print_time != self.print_time:
                self.print_time_stall += 1
                self.dwell(self.buffer_time_low + STALL_TIME)
                return self.reactor.NOW
            self.reset_print_time()
            return self.motor_off_time
        except:
            logging.exception("Exception in flush_handler")
            self.force_shutdown()
    def stats(self, eventtime):
        buffer_time = 0.
        if self.print_time:
            buffer_time = self.printer.mcu.get_print_buffer_time(
                eventtime, self.print_time)
        return "print_time=%.3f buffer_time=%.3f print_time_stall=%d" % (
            self.print_time, buffer_time, self.print_time_stall)
    # Movement commands
    def get_position(self):
        return list(self.commanded_pos)
    def set_position(self, newpos):
        self.move_queue.flush()
        self.commanded_pos[:] = newpos
        self.kin.set_position(newpos)
    def move(self, newpos, speed):
        speed = min(speed, self.max_speed)
        move = Move(self, self.commanded_pos, newpos, speed, self.max_accel)
        if not move.move_d:
            return
        if move.is_kinematic_move:
            self.kin.check_move(move)
        if move.axes_d[3]:
            self.extruder.check_move(move)
        self.commanded_pos[:] = newpos
        self.move_queue.add_move(move)
        if self.print_time > self.need_check_stall:
            self._check_stall()
    def home(self, homing_state):
        self.kin.home(homing_state)
    def dwell(self, delay):
        self.get_last_move_time()
        self.update_move_time(delay)
        self._check_stall()
    def motor_off(self):
        self.dwell(STALL_TIME)
        last_move_time = self.get_last_move_time()
        self.kin.motor_off(last_move_time)
        self.extruder.motor_off(last_move_time)
        self.dwell(STALL_TIME)
        logging.debug('; Max time of %f' % (last_move_time,))
    def wait_moves(self):
        self.move_queue.flush()
        eventtime = time.time()
        while self.print_time:
            eventtime = self.reactor.pause(eventtime + 0.100)
    def query_endstops(self):
        last_move_time = self.get_last_move_time()
        return self.kin.query_endstops(last_move_time)
    def force_shutdown(self):
        self.printer.mcu.force_shutdown()
        self.move_queue.reset()
        self.reset_print_time()