aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/stepcompress.c
blob: 6c5f766f022a184a44eb711c6ea089dc5d4665e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
// Stepper pulse schedule compression
//
// Copyright (C) 2016,2017  Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
//
// The goal of this code is to take a series of scheduled stepper
// pulse times and compress them into a handful of commands that can
// be efficiently transmitted and executed on a microcontroller (mcu).
// The mcu accepts step pulse commands that take interval, count, and
// add parameters such that 'count' pulses occur, with each step event
// calculating the next step event time using:
//  next_wake_time = last_wake_time + interval; interval += add
// This code is writtin in C (instead of python) for processing
// efficiency - the repetitive integer math is vastly faster in C.

#include <math.h> // sqrt
#include <stddef.h> // offsetof
#include <stdint.h> // uint32_t
#include <stdio.h> // fprintf
#include <stdlib.h> // malloc
#include <string.h> // memset
#include "pyhelper.h" // errorf
#include "serialqueue.h" // struct queue_message

#define CHECK_LINES 1
#define QUEUE_START_SIZE 1024

struct stepcompress {
    // Buffer management
    uint32_t *queue, *queue_end, *queue_pos, *queue_next;
    // Internal tracking
    uint32_t max_error;
    double mcu_time_offset, mcu_freq;
    // Message generation
    uint64_t last_step_clock, homing_clock;
    struct list_head msg_queue;
    uint32_t queue_step_msgid, set_next_step_dir_msgid, oid;
    int sdir, invert_sdir;
};


/****************************************************************
 * Step compression
 ****************************************************************/

#define DIV_UP(n,d) (((n) + (d) - 1) / (d))

static inline int32_t
idiv_up(int32_t n, int32_t d)
{
    return (n>=0) ? DIV_UP(n,d) : (n/d);
}

static inline int32_t
idiv_down(int32_t n, int32_t d)
{
    return (n>=0) ? (n/d) : (n - d + 1) / d;
}

struct points {
    int32_t minp, maxp;
};

// Given a requested step time, return the minimum and maximum
// acceptable times
static inline struct points
minmax_point(struct stepcompress *sc, uint32_t *pos)
{
    uint32_t lsc = sc->last_step_clock, point = *pos - lsc;
    uint32_t prevpoint = pos > sc->queue_pos ? *(pos-1) - lsc : 0;
    uint32_t max_error = (point - prevpoint) / 2;
    if (max_error > sc->max_error)
        max_error = sc->max_error;
    return (struct points){ point - max_error, point };
}

// The maximum add delta between two valid quadratic sequences of the
// form "add*count*(count-1)/2 + interval*count" is "(6 + 4*sqrt(2)) *
// maxerror / (count*count)".  The "6 + 4*sqrt(2)" is 11.65685, but
// using 11 works well in practice.
#define QUADRATIC_DEV 11

struct step_move {
    uint32_t interval;
    uint16_t count;
    int16_t add;
};

// Find a 'step_move' that covers a series of step times
static struct step_move
compress_bisect_add(struct stepcompress *sc)
{
    uint32_t *qlast = sc->queue_next;
    if (qlast > sc->queue_pos + 65535)
        qlast = sc->queue_pos + 65535;
    struct points point = minmax_point(sc, sc->queue_pos);
    int32_t outer_mininterval = point.minp, outer_maxinterval = point.maxp;
    int32_t add = 0, minadd = -0x8000, maxadd = 0x7fff;
    int32_t bestinterval = 0, bestcount = 1, bestadd = 1, bestreach = INT32_MIN;
    int32_t zerointerval = 0, zerocount = 0;

    for (;;) {
        // Find longest valid sequence with the given 'add'
        struct points nextpoint;
        int32_t nextmininterval = outer_mininterval;
        int32_t nextmaxinterval = outer_maxinterval, interval = nextmaxinterval;
        int32_t nextcount = 1;
        for (;;) {
            nextcount++;
            if (&sc->queue_pos[nextcount-1] >= qlast) {
                int32_t count = nextcount - 1;
                return (struct step_move){ interval, count, add };
            }
            nextpoint = minmax_point(sc, sc->queue_pos + nextcount - 1);
            int32_t nextaddfactor = nextcount*(nextcount-1)/2;
            int32_t c = add*nextaddfactor;
            if (nextmininterval*nextcount < nextpoint.minp - c)
                nextmininterval = DIV_UP(nextpoint.minp - c, nextcount);
            if (nextmaxinterval*nextcount > nextpoint.maxp - c)
                nextmaxinterval = (nextpoint.maxp - c) / nextcount;
            if (nextmininterval > nextmaxinterval)
                break;
            interval = nextmaxinterval;
        }

        // Check if this is the best sequence found so far
        int32_t count = nextcount - 1, addfactor = count*(count-1)/2;
        int32_t reach = add*addfactor + interval*count;
        if (reach > bestreach
            || (reach == bestreach && interval > bestinterval)) {
            bestinterval = interval;
            bestcount = count;
            bestadd = add;
            bestreach = reach;
            if (!add) {
                zerointerval = interval;
                zerocount = count;
            }
            if (count > 0x200)
                // No 'add' will improve sequence; avoid integer overflow
                break;
        }

        // Check if a greater or lesser add could extend the sequence
        int32_t nextaddfactor = nextcount*(nextcount-1)/2;
        int32_t nextreach = add*nextaddfactor + interval*nextcount;
        if (nextreach < nextpoint.minp) {
            minadd = add + 1;
            outer_maxinterval = nextmaxinterval;
        } else {
            maxadd = add - 1;
            outer_mininterval = nextmininterval;
        }

        // The maximum valid deviation between two quadratic sequences
        // can be calculated and used to further limit the add range.
        if (count > 1) {
            int32_t errdelta = sc->max_error*QUADRATIC_DEV / (count*count);
            if (minadd < add - errdelta)
                minadd = add - errdelta;
            if (maxadd > add + errdelta)
                maxadd = add + errdelta;
        }

        // See if next point would further limit the add range
        int32_t c = outer_maxinterval * nextcount;
        if (minadd*nextaddfactor < nextpoint.minp - c)
            minadd = idiv_up(nextpoint.minp - c, nextaddfactor);
        c = outer_mininterval * nextcount;
        if (maxadd*nextaddfactor > nextpoint.maxp - c)
            maxadd = idiv_down(nextpoint.maxp - c, nextaddfactor);

        // Bisect valid add range and try again with new 'add'
        if (minadd > maxadd)
            break;
        add = maxadd - (maxadd - minadd) / 4;
    }
    if (zerocount + zerocount/16 >= bestcount)
        // Prefer add=0 if it's similar to the best found sequence
        return (struct step_move){ zerointerval, zerocount, 0 };
    return (struct step_move){ bestinterval, bestcount, bestadd };
}


/****************************************************************
 * Step compress checking
 ****************************************************************/

#define ERROR_RET -989898989

// Verify that a given 'step_move' matches the actual step times
static int
check_line(struct stepcompress *sc, struct step_move move)
{
    if (!CHECK_LINES)
        return 0;
    if (!move.count || (!move.interval && !move.add && move.count > 1)
        || move.interval >= 0x80000000) {
        errorf("stepcompress o=%d i=%d c=%d a=%d: Invalid sequence"
               , sc->oid, move.interval, move.count, move.add);
        return ERROR_RET;
    }
    uint32_t interval = move.interval, p = 0;
    uint16_t i;
    for (i=0; i<move.count; i++) {
        struct points point = minmax_point(sc, sc->queue_pos + i);
        p += interval;
        if (p < point.minp || p > point.maxp) {
            errorf("stepcompress o=%d i=%d c=%d a=%d: Point %d: %d not in %d:%d"
                   , sc->oid, move.interval, move.count, move.add
                   , i+1, p, point.minp, point.maxp);
            return ERROR_RET;
        }
        if (interval >= 0x80000000) {
            errorf("stepcompress o=%d i=%d c=%d a=%d:"
                   " Point %d: interval overflow %d"
                   , sc->oid, move.interval, move.count, move.add
                   , i+1, interval);
            return ERROR_RET;
        }
        interval += move.add;
    }
    return 0;
}


/****************************************************************
 * Step compress interface
 ****************************************************************/

// Allocate a new 'stepcompress' object
struct stepcompress *
stepcompress_alloc(uint32_t max_error, uint32_t queue_step_msgid
                   , uint32_t set_next_step_dir_msgid, uint32_t invert_sdir
                   , uint32_t oid)
{
    struct stepcompress *sc = malloc(sizeof(*sc));
    memset(sc, 0, sizeof(*sc));
    sc->max_error = max_error;
    list_init(&sc->msg_queue);
    sc->queue_step_msgid = queue_step_msgid;
    sc->set_next_step_dir_msgid = set_next_step_dir_msgid;
    sc->oid = oid;
    sc->sdir = -1;
    sc->invert_sdir = !!invert_sdir;
    return sc;
}

// Free memory associated with a 'stepcompress' object
void
stepcompress_free(struct stepcompress *sc)
{
    if (!sc)
        return;
    free(sc->queue);
    message_queue_free(&sc->msg_queue);
    free(sc);
}

// Convert previously scheduled steps into commands for the mcu
static int
stepcompress_flush(struct stepcompress *sc, uint64_t move_clock)
{
    if (sc->queue_pos >= sc->queue_next)
        return 0;
    while (sc->last_step_clock < move_clock) {
        struct step_move move = compress_bisect_add(sc);
        int ret = check_line(sc, move);
        if (ret)
            return ret;

        uint32_t msg[5] = {
            sc->queue_step_msgid, sc->oid, move.interval, move.count, move.add
        };
        struct queue_message *qm = message_alloc_and_encode(msg, 5);
        qm->min_clock = qm->req_clock = sc->last_step_clock;
        int32_t addfactor = move.count*(move.count-1)/2;
        uint32_t ticks = move.add*addfactor + move.interval*move.count;
        sc->last_step_clock += ticks;
        if (sc->homing_clock)
            // When homing, all steps should be sent prior to homing_clock
            qm->min_clock = qm->req_clock = sc->homing_clock;
        list_add_tail(&qm->node, &sc->msg_queue);

        if (sc->queue_pos + move.count >= sc->queue_next) {
            sc->queue_pos = sc->queue_next = sc->queue;
            break;
        }
        sc->queue_pos += move.count;
    }
    return 0;
}

// Generate a queue_step for a step far in the future from the last step
static int
stepcompress_flush_far(struct stepcompress *sc, uint64_t abs_step_clock)
{
    uint32_t msg[5] = {
        sc->queue_step_msgid, sc->oid, abs_step_clock - sc->last_step_clock, 1, 0
    };
    struct queue_message *qm = message_alloc_and_encode(msg, 5);
    qm->min_clock = sc->last_step_clock;
    sc->last_step_clock = qm->req_clock = abs_step_clock;
    if (sc->homing_clock)
        // When homing, all steps should be sent prior to homing_clock
        qm->min_clock = qm->req_clock = sc->homing_clock;
    list_add_tail(&qm->node, &sc->msg_queue);
    return 0;
}

// Send the set_next_step_dir command
static int
set_next_step_dir(struct stepcompress *sc, int sdir)
{
    if (sc->sdir == sdir)
        return 0;
    sc->sdir = sdir;
    int ret = stepcompress_flush(sc, UINT64_MAX);
    if (ret)
        return ret;
    uint32_t msg[3] = {
        sc->set_next_step_dir_msgid, sc->oid, sdir ^ sc->invert_sdir
    };
    struct queue_message *qm = message_alloc_and_encode(msg, 3);
    qm->req_clock = sc->homing_clock ?: sc->last_step_clock;
    list_add_tail(&qm->node, &sc->msg_queue);
    return 0;
}

// Reset the internal state of the stepcompress object
int
stepcompress_reset(struct stepcompress *sc, uint64_t last_step_clock)
{
    int ret = stepcompress_flush(sc, UINT64_MAX);
    if (ret)
        return ret;
    sc->last_step_clock = last_step_clock;
    sc->sdir = -1;
    return 0;
}

// Indicate the stepper is in homing mode (or done homing if zero)
int
stepcompress_set_homing(struct stepcompress *sc, uint64_t homing_clock)
{
    int ret = stepcompress_flush(sc, UINT64_MAX);
    if (ret)
        return ret;
    sc->homing_clock = homing_clock;
    return 0;
}

// Queue an mcu command to go out in order with stepper commands
int
stepcompress_queue_msg(struct stepcompress *sc, uint32_t *data, int len)
{
    int ret = stepcompress_flush(sc, UINT64_MAX);
    if (ret)
        return ret;

    struct queue_message *qm = message_alloc_and_encode(data, len);
    qm->req_clock = sc->homing_clock ?: sc->last_step_clock;
    list_add_tail(&qm->node, &sc->msg_queue);
    return 0;
}

// Set the conversion rate of 'print_time' to mcu clock
static void
stepcompress_set_time(struct stepcompress *sc
                      , double time_offset, double mcu_freq)
{
    sc->mcu_time_offset = time_offset;
    sc->mcu_freq = mcu_freq;
}


/****************************************************************
 * Queue management
 ****************************************************************/

struct queue_append {
    struct stepcompress *sc;
    uint32_t *qnext, *qend, last_step_clock_32;
    double clock_offset;
};

// Maximium clock delta between messages in the queue
#define CLOCK_DIFF_MAX (3<<28)

// Create a cursor for inserting clock times into the queue
static inline struct queue_append
queue_append_start(struct stepcompress *sc, double print_time, double adjust)
{
    double print_clock = (print_time - sc->mcu_time_offset) * sc->mcu_freq;
    return (struct queue_append) {
        .sc = sc, .qnext = sc->queue_next, .qend = sc->queue_end,
        .last_step_clock_32 = sc->last_step_clock,
        .clock_offset = (print_clock - (double)sc->last_step_clock) + adjust };
}

// Finalize a cursor created with queue_append_start()
static inline void
queue_append_finish(struct queue_append qa)
{
    qa.sc->queue_next = qa.qnext;
}

// Slow path for queue_append()
static int
queue_append_slow(struct stepcompress *sc, double rel_sc)
{
    uint64_t abs_step_clock = (uint64_t)rel_sc + sc->last_step_clock;
    if (abs_step_clock >= sc->last_step_clock + CLOCK_DIFF_MAX) {
        // Avoid integer overflow on steps far in the future
        int ret = stepcompress_flush(sc, abs_step_clock - CLOCK_DIFF_MAX + 1);
        if (ret)
            return ret;

        if (abs_step_clock >= sc->last_step_clock + CLOCK_DIFF_MAX)
            return stepcompress_flush_far(sc, abs_step_clock);
    }

    if (sc->queue_next - sc->queue_pos > 65535 + 2000) {
        // No point in keeping more than 64K steps in memory
        uint32_t flush = *(sc->queue_next-65535) - (uint32_t)sc->last_step_clock;
        int ret = stepcompress_flush(sc, sc->last_step_clock + flush);
        if (ret)
            return ret;
    }

    if (sc->queue_next >= sc->queue_end) {
        // Make room in the queue
        int in_use = sc->queue_next - sc->queue_pos;
        if (sc->queue_pos > sc->queue) {
            // Shuffle the internal queue to avoid having to allocate more ram
            memmove(sc->queue, sc->queue_pos, in_use * sizeof(*sc->queue));
        } else {
            // Expand the internal queue of step times
            int alloc = sc->queue_end - sc->queue;
            if (!alloc)
                alloc = QUEUE_START_SIZE;
            while (in_use >= alloc)
                alloc *= 2;
            sc->queue = realloc(sc->queue, alloc * sizeof(*sc->queue));
            sc->queue_end = sc->queue + alloc;
        }
        sc->queue_pos = sc->queue;
        sc->queue_next = sc->queue + in_use;
    }

    *sc->queue_next++ = abs_step_clock;
    return 0;
}

// Add a clock time to the queue (flushing the queue if needed)
static inline int
queue_append(struct queue_append *qa, double step_clock)
{
    double rel_sc = step_clock + qa->clock_offset;
    if (likely(!(qa->qnext >= qa->qend || rel_sc >= (double)CLOCK_DIFF_MAX))) {
        *qa->qnext++ = qa->last_step_clock_32 + (uint32_t)rel_sc;
        return 0;
    }
    // Call queue_append_slow() to handle queue expansion and integer overflow
    struct stepcompress *sc = qa->sc;
    uint64_t old_last_step_clock = sc->last_step_clock;
    sc->queue_next = qa->qnext;
    int ret = queue_append_slow(sc, rel_sc);
    if (ret)
        return ret;
    qa->qnext = sc->queue_next;
    qa->qend = sc->queue_end;
    qa->last_step_clock_32 = sc->last_step_clock;
    qa->clock_offset -= sc->last_step_clock - old_last_step_clock;
    return 0;
}


/****************************************************************
 * Motion to step conversions
 ****************************************************************/

// Common suffixes: _sd is step distance (a unit length the same
// distance the stepper moves on each step), _sv is step velocity (in
// units of step distance per time), _sd2 is step distance squared, _r
// is ratio (scalar usually between 0.0 and 1.0).  Times are in
// seconds and acceleration is in units of step distance per second
// squared.

// Wrapper around sqrt() to handle small negative numbers
static double
_safe_sqrt(double v)
{
    // Due to floating point truncation, it's possible to get a small
    // negative number - treat it as zero.
    if (v < -0.001)
        errorf("safe_sqrt of %.9f", v);
    return 0.;
}
static inline double safe_sqrt(double v) {
    return likely(v >= 0.) ? sqrt(v) : _safe_sqrt(v);
}

// Schedule a step event at the specified step_clock time
int32_t
stepcompress_push(struct stepcompress *sc, double print_time, int32_t sdir)
{
    int ret = set_next_step_dir(sc, !!sdir);
    if (ret)
        return ret;
    struct queue_append qa = queue_append_start(sc, print_time, 0.5);
    ret = queue_append(&qa, 0.);
    if (ret)
        return ret;
    queue_append_finish(qa);
    return sdir ? 1 : -1;
}

// Schedule 'steps' number of steps at constant acceleration. If
// acceleration is zero (ie, constant velocity) it uses the formula:
//  step_time = print_time + step_num/start_sv
// Otherwise it uses the formula:
//  step_time = (print_time + sqrt(2*step_num/accel + (start_sv/accel)**2)
//               - start_sv/accel)
int32_t
stepcompress_push_const(
    struct stepcompress *sc, double print_time
    , double step_offset, double steps, double start_sv, double accel)
{
    // Calculate number of steps to take
    int sdir = 1;
    if (steps < 0) {
        sdir = 0;
        steps = -steps;
        step_offset = -step_offset;
    }
    int count = steps + .5 - step_offset;
    if (count <= 0 || count > 10000000) {
        if (count && steps) {
            errorf("push_const invalid count %d %f %f %f %f %f"
                   , sc->oid, print_time, step_offset, steps
                   , start_sv, accel);
            return ERROR_RET;
        }
        return 0;
    }
    int ret = set_next_step_dir(sc, sdir);
    if (ret)
        return ret;
    int res = sdir ? count : -count;

    // Calculate each step time
    if (!accel) {
        // Move at constant velocity (zero acceleration)
        struct queue_append qa = queue_append_start(sc, print_time, .5);
        double inv_cruise_sv = sc->mcu_freq / start_sv;
        double pos = (step_offset + .5) * inv_cruise_sv;
        while (count--) {
            ret = queue_append(&qa, pos);
            if (ret)
                return ret;
            pos += inv_cruise_sv;
        }
        queue_append_finish(qa);
    } else {
        // Move with constant acceleration
        double inv_accel = 1. / accel;
        double accel_time = start_sv * inv_accel * sc->mcu_freq;
        struct queue_append qa = queue_append_start(
            sc, print_time, 0.5 - accel_time);
        double accel_multiplier = 2. * inv_accel * sc->mcu_freq * sc->mcu_freq;
        double pos = (step_offset + .5)*accel_multiplier + accel_time*accel_time;
        while (count--) {
            double v = safe_sqrt(pos);
            int ret = queue_append(&qa, accel_multiplier >= 0. ? v : -v);
            if (ret)
                return ret;
            pos += accel_multiplier;
        }
        queue_append_finish(qa);
    }
    return res;
}

// Schedule steps using delta kinematics
static int32_t
_stepcompress_push_delta(
    struct stepcompress *sc, int sdir
    , double print_time, double move_sd, double start_sv, double accel
    , double height, double startxy_sd, double arm_sd, double movez_r)
{
    // Calculate number of steps to take
    double movexy_r = movez_r ? sqrt(1. - movez_r*movez_r) : 1.;
    double arm_sd2 = arm_sd * arm_sd;
    double endxy_sd = startxy_sd - movexy_r*move_sd;
    double end_height = safe_sqrt(arm_sd2 - endxy_sd*endxy_sd);
    int count = (end_height + movez_r*move_sd - height) * (sdir ? 1. : -1.) + .5;
    if (count <= 0 || count > 10000000) {
        if (count) {
            errorf("push_delta invalid count %d %d %f %f %f %f %f %f %f %f"
                   , sc->oid, count, print_time, move_sd, start_sv, accel
                   , height, startxy_sd, arm_sd, movez_r);
            return ERROR_RET;
        }
        return 0;
    }
    int ret = set_next_step_dir(sc, sdir);
    if (ret)
        return ret;
    int res = sdir ? count : -count;

    // Calculate each step time
    height += (sdir ? .5 : -.5);
    if (!accel) {
        // Move at constant velocity (zero acceleration)
        struct queue_append qa = queue_append_start(sc, print_time, .5);
        double inv_cruise_sv = sc->mcu_freq / start_sv;
        if (!movez_r) {
            // Optimized case for common XY only moves (no Z movement)
            while (count--) {
                double v = safe_sqrt(arm_sd2 - height*height);
                double pos = startxy_sd + (sdir ? -v : v);
                int ret = queue_append(&qa, pos * inv_cruise_sv);
                if (ret)
                    return ret;
                height += (sdir ? 1. : -1.);
            }
        } else if (!movexy_r) {
            // Optimized case for Z only moves
            double pos = ((sdir ? height-end_height : end_height-height)
                          * inv_cruise_sv);
            while (count--) {
                int ret = queue_append(&qa, pos);
                if (ret)
                    return ret;
                pos += inv_cruise_sv;
            }
        } else {
            // General case (handles XY+Z moves)
            double start_pos = movexy_r*startxy_sd, zoffset = movez_r*startxy_sd;
            while (count--) {
                double relheight = movexy_r*height - zoffset;
                double v = safe_sqrt(arm_sd2 - relheight*relheight);
                double pos = start_pos + movez_r*height + (sdir ? -v : v);
                int ret = queue_append(&qa, pos * inv_cruise_sv);
                if (ret)
                    return ret;
                height += (sdir ? 1. : -1.);
            }
        }
        queue_append_finish(qa);
    } else {
        // Move with constant acceleration
        double start_pos = movexy_r*startxy_sd, zoffset = movez_r*startxy_sd;
        double inv_accel = 1. / accel;
        start_pos += 0.5 * start_sv*start_sv * inv_accel;
        struct queue_append qa = queue_append_start(
            sc, print_time, 0.5 - start_sv * inv_accel * sc->mcu_freq);
        double accel_multiplier = 2. * inv_accel * sc->mcu_freq * sc->mcu_freq;
        while (count--) {
            double relheight = movexy_r*height - zoffset;
            double v = safe_sqrt(arm_sd2 - relheight*relheight);
            double pos = start_pos + movez_r*height + (sdir ? -v : v);
            v = safe_sqrt(pos * accel_multiplier);
            int ret = queue_append(&qa, accel_multiplier >= 0. ? v : -v);
            if (ret)
                return ret;
            height += (sdir ? 1. : -1.);
        }
        queue_append_finish(qa);
    }
    return res;
}

int32_t
stepcompress_push_delta(
    struct stepcompress *sc, double print_time, double move_sd
    , double start_sv, double accel
    , double height, double startxy_sd, double arm_sd, double movez_r)
{
    double reversexy_sd = startxy_sd + arm_sd*movez_r;
    if (reversexy_sd <= 0.)
        // All steps are in down direction
        return _stepcompress_push_delta(
            sc, 0, print_time, move_sd, start_sv, accel
            , height, startxy_sd, arm_sd, movez_r);
    double movexy_r = movez_r ? sqrt(1. - movez_r*movez_r) : 1.;
    if (reversexy_sd >= move_sd * movexy_r)
        // All steps are in up direction
        return _stepcompress_push_delta(
            sc, 1, print_time, move_sd, start_sv, accel
            , height, startxy_sd, arm_sd, movez_r);
    // Steps in both up and down direction
    int res1 = _stepcompress_push_delta(
        sc, 1, print_time, reversexy_sd / movexy_r, start_sv, accel
        , height, startxy_sd, arm_sd, movez_r);
    if (res1 == ERROR_RET)
        return res1;
    int res2 = _stepcompress_push_delta(
        sc, 0, print_time, move_sd, start_sv, accel
        , height + res1, startxy_sd, arm_sd, movez_r);
    if (res2 == ERROR_RET)
        return res2;
    return res1 + res2;
}


/****************************************************************
 * Step compress synchronization
 ****************************************************************/

// The steppersync object is used to synchronize the output of mcu
// step commands.  The mcu can only queue a limited number of step
// commands - this code tracks when items on the mcu step queue become
// free so that new commands can be transmitted.  It also ensures the
// mcu step queue is ordered between steppers so that no stepper
// starves the other steppers of space in the mcu step queue.

struct steppersync {
    // Serial port
    struct serialqueue *sq;
    struct command_queue *cq;
    // Storage for associated stepcompress objects
    struct stepcompress **sc_list;
    int sc_num;
    // Storage for list of pending move clocks
    uint64_t *move_clocks;
    int num_move_clocks;
};

// Allocate a new 'steppersync' object
struct steppersync *
steppersync_alloc(struct serialqueue *sq, struct stepcompress **sc_list
                  , int sc_num, int move_num)
{
    struct steppersync *ss = malloc(sizeof(*ss));
    memset(ss, 0, sizeof(*ss));
    ss->sq = sq;
    ss->cq = serialqueue_alloc_commandqueue();

    ss->sc_list = malloc(sizeof(*sc_list)*sc_num);
    memcpy(ss->sc_list, sc_list, sizeof(*sc_list)*sc_num);
    ss->sc_num = sc_num;

    ss->move_clocks = malloc(sizeof(*ss->move_clocks)*move_num);
    memset(ss->move_clocks, 0, sizeof(*ss->move_clocks)*move_num);
    ss->num_move_clocks = move_num;

    return ss;
}

// Free memory associated with a 'steppersync' object
void
steppersync_free(struct steppersync *ss)
{
    if (!ss)
        return;
    free(ss->sc_list);
    free(ss->move_clocks);
    serialqueue_free_commandqueue(ss->cq);
    free(ss);
}

// Set the conversion rate of 'print_time' to mcu clock
void
steppersync_set_time(struct steppersync *ss, double time_offset, double mcu_freq)
{
    int i;
    for (i=0; i<ss->sc_num; i++) {
        struct stepcompress *sc = ss->sc_list[i];
        stepcompress_set_time(sc, time_offset, mcu_freq);
    }
}

// Implement a binary heap algorithm to track when the next available
// 'struct move' in the mcu will be available
static void
heap_replace(struct steppersync *ss, uint64_t req_clock)
{
    uint64_t *mc = ss->move_clocks;
    int nmc = ss->num_move_clocks, pos = 0;
    for (;;) {
        int child1_pos = 2*pos+1, child2_pos = 2*pos+2;
        uint64_t child2_clock = child2_pos < nmc ? mc[child2_pos] : UINT64_MAX;
        uint64_t child1_clock = child1_pos < nmc ? mc[child1_pos] : UINT64_MAX;
        if (req_clock <= child1_clock && req_clock <= child2_clock) {
            mc[pos] = req_clock;
            break;
        }
        if (child1_clock < child2_clock) {
            mc[pos] = child1_clock;
            pos = child1_pos;
        } else {
            mc[pos] = child2_clock;
            pos = child2_pos;
        }
    }
}

// Find and transmit any scheduled steps prior to the given 'move_clock'
int
steppersync_flush(struct steppersync *ss, uint64_t move_clock)
{
    // Flush each stepcompress to the specified move_clock
    int i;
    for (i=0; i<ss->sc_num; i++) {
        int ret = stepcompress_flush(ss->sc_list[i], move_clock);
        if (ret)
            return ret;
    }

    // Order commands by the reqclock of each pending command
    struct list_head msgs;
    list_init(&msgs);
    for (;;) {
        // Find message with lowest reqclock
        uint64_t req_clock = MAX_CLOCK;
        struct queue_message *qm = NULL;
        for (i=0; i<ss->sc_num; i++) {
            struct stepcompress *sc = ss->sc_list[i];
            if (!list_empty(&sc->msg_queue)) {
                struct queue_message *m = list_first_entry(
                    &sc->msg_queue, struct queue_message, node);
                if (m->req_clock < req_clock) {
                    qm = m;
                    req_clock = m->req_clock;
                }
            }
        }
        if (!qm || (qm->min_clock && req_clock > move_clock))
            break;

        uint64_t next_avail = ss->move_clocks[0];
        if (qm->min_clock)
            // The qm->min_clock field is overloaded to indicate that
            // the command uses the 'move queue' and to store the time
            // that move queue item becomes available.
            heap_replace(ss, qm->min_clock);
        // Reset the min_clock to its normal meaning (minimum transmit time)
        qm->min_clock = next_avail;

        // Batch this command
        list_del(&qm->node);
        list_add_tail(&qm->node, &msgs);
    }

    // Transmit commands
    if (!list_empty(&msgs))
        serialqueue_send_batch(ss->sq, ss->cq, &msgs);
    return 0;
}