1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
# Support for duplication and mirroring modes for IDEX printers
#
# Copyright (C) 2021 Fabrice Gallet <tircown@gmail.com>
# Copyright (C) 2023-2025 Dmitry Butyugin <dmbutyugin@google.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import collections, logging, math
import chelper
INACTIVE = "INACTIVE"
PRIMARY = "PRIMARY"
COPY = "COPY"
MIRROR = "MIRROR"
class DualCarriages:
VALID_MODES = [PRIMARY, COPY, MIRROR]
def __init__(self, printer, primary_rails, dual_rails, axes, safe_dist={}):
self.printer = printer
self.axes = axes
self._init_steppers(primary_rails + dual_rails)
self.primary_rails = [
DualCarriagesRail(printer, c, dual_rails[i], axes[i], active=True)
for i, c in enumerate(primary_rails)
]
self.dual_rails = [
DualCarriagesRail(printer, c, primary_rails[i], axes[i], active=False)
for i, c in enumerate(dual_rails)
]
self.dc_rails = collections.OrderedDict(
[
(c.rail.get_name(short=True), c)
for c in self.primary_rails + self.dual_rails
]
)
self.saved_states = {}
self.safe_dist = {}
for i, dc in enumerate(dual_rails):
axis = axes[i]
if isinstance(safe_dist, dict):
if axis in safe_dist:
self.safe_dist[axis] = safe_dist[axis]
continue
elif safe_dist is not None:
self.safe_dist[axis] = safe_dist
continue
pc = primary_rails[i]
self.safe_dist[axis] = min(
abs(pc.position_min - dc.position_min),
abs(pc.position_max - dc.position_max),
)
self.printer.add_object("dual_carriage", self)
self.printer.register_event_handler("klippy:ready", self._handle_ready)
gcode = self.printer.lookup_object("gcode")
gcode.register_command(
"SET_DUAL_CARRIAGE",
self.cmd_SET_DUAL_CARRIAGE,
desc=self.cmd_SET_DUAL_CARRIAGE_help,
)
gcode.register_command(
"SAVE_DUAL_CARRIAGE_STATE",
self.cmd_SAVE_DUAL_CARRIAGE_STATE,
desc=self.cmd_SAVE_DUAL_CARRIAGE_STATE_help,
)
gcode.register_command(
"RESTORE_DUAL_CARRIAGE_STATE",
self.cmd_RESTORE_DUAL_CARRIAGE_STATE,
desc=self.cmd_RESTORE_DUAL_CARRIAGE_STATE_help,
)
def _init_steppers(self, rails):
ffi_main, ffi_lib = chelper.get_ffi()
self.dc_stepper_kinematics = []
self.orig_stepper_kinematics = []
steppers = set()
for rail in rails:
c_steppers = rail.get_steppers()
if not c_steppers:
raise self.printer.config_error(
"At least one stepper must be "
"associated with carriage: %s" % rail.get_name()
)
steppers.update(c_steppers)
for s in steppers:
sk = ffi_main.gc(ffi_lib.dual_carriage_alloc(), ffi_lib.free)
orig_sk = s.get_stepper_kinematics()
ffi_lib.dual_carriage_set_sk(sk, orig_sk)
self.dc_stepper_kinematics.append(sk)
self.orig_stepper_kinematics.append(orig_sk)
s.set_stepper_kinematics(sk)
def get_axes(self):
return self.axes
def get_primary_rail(self, axis):
for dc_rail in self.dc_rails.values():
if dc_rail.mode == PRIMARY and dc_rail.axis == axis:
return dc_rail.rail
return None
def get_dc_rail_wrapper(self, rail):
for dc_rail in self.dc_rails.values():
if dc_rail.rail == rail:
return dc_rail
return None
def get_transform(self, rail):
dc_rail = self.get_dc_rail_wrapper(rail)
if dc_rail is not None:
return (dc_rail.scale, dc_rail.offset)
return (0.0, 0.0)
def is_active(self, rail):
dc_rail = self.get_dc_rail_wrapper(rail)
return dc_rail.is_active() if dc_rail is not None else False
def toggle_active_dc_rail(self, target_dc):
toolhead = self.printer.lookup_object("toolhead")
toolhead.flush_step_generation()
pos = toolhead.get_position()
kin = toolhead.get_kinematics()
axis = target_dc.axis
for dc in self.dc_rails.values():
if dc != target_dc and dc.axis == axis and dc.is_active():
dc.inactivate(pos)
if target_dc.mode != PRIMARY:
newpos = pos[:axis] + [target_dc.get_axis_position(pos)] + pos[axis + 1 :]
target_dc.activate(PRIMARY, newpos, old_position=pos)
toolhead.set_position(newpos)
kin.update_limits(axis, target_dc.rail.get_range())
def home(self, homing_state, axis):
kin = self.printer.lookup_object("toolhead").get_kinematics()
dcs = [dc for dc in self.dc_rails.values() if dc.axis == axis]
if (self.get_dc_order(dcs[0], dcs[1]) > 0) != dcs[
0
].rail.get_homing_info().positive_dir:
# The second carriage must home first, because the carriages home in
# the same direction and the first carriage homes on the second one
dcs.reverse()
for dc in dcs:
self.toggle_active_dc_rail(dc)
kin.home_axis(homing_state, axis, dc.rail)
# Restore the original rails ordering
self.toggle_active_dc_rail(dcs[0])
def get_status(self, eventtime=None):
status = {
"carriages": {dc.get_name(): dc.mode for dc in self.dc_rails.values()}
}
if len(self.dc_rails) == 2:
status.update(
{
("carriage_%d" % (i,)): dc.mode
for i, dc in enumerate(self.dc_rails.values())
}
)
return status
def get_kin_range(self, toolhead, mode, axis):
pos = toolhead.get_position()
dcs = [dc for dc in self.dc_rails.values() if dc.axis == axis]
axes_pos = [dc.get_axis_position(pos) for dc in dcs]
dc0_rail = dcs[0].rail
dc1_rail = dcs[1].rail
if mode != PRIMARY or dcs[0].is_active():
range_min = dc0_rail.position_min
range_max = dc0_rail.position_max
else:
range_min = dc1_rail.position_min
range_max = dc1_rail.position_max
safe_dist = self.safe_dist[axis]
if not safe_dist:
return (range_min, range_max)
if mode == COPY:
range_min = max(
range_min, axes_pos[0] - axes_pos[1] + dc1_rail.position_min
)
range_max = min(
range_max, axes_pos[0] - axes_pos[1] + dc1_rail.position_max
)
elif mode == MIRROR:
if self.get_dc_order(dcs[0], dcs[1]) > 0:
range_min = max(range_min, 0.5 * (sum(axes_pos) + safe_dist))
range_max = min(range_max, sum(axes_pos) - dc1_rail.position_min)
else:
range_max = min(range_max, 0.5 * (sum(axes_pos) - safe_dist))
range_min = max(range_min, sum(axes_pos) - dc1_rail.position_max)
else:
# mode == PRIMARY
active_idx = 1 if dcs[1].is_active() else 0
inactive_idx = 1 - active_idx
if self.get_dc_order(dcs[active_idx], dcs[inactive_idx]) > 0:
range_min = max(range_min, axes_pos[inactive_idx] + safe_dist)
else:
range_max = min(range_max, axes_pos[inactive_idx] - safe_dist)
if range_min > range_max:
# During multi-MCU homing it is possible that the carriage
# position will end up below position_min or above position_max
# if position_endstop is too close to the rail motion ends due
# to inherent latencies of the data transmission between MCUs.
# This can result in an invalid range_min > range_max range
# in certain modes, which may confuse the kinematics code.
# So, return an empty range instead, which will correctly
# block the carriage motion until a different mode is selected
# which actually permits carriage motion.
return (range_min, range_min)
return (range_min, range_max)
def get_dc_order(self, first_dc, second_dc):
if first_dc == second_dc:
return 0
# Check the relative order of the first and second carriages and
# return -1 if the first carriage position is always smaller
# than the second one and 1 otherwise
first_rail = first_dc.rail
second_rail = second_dc.rail
first_homing_info = first_rail.get_homing_info()
second_homing_info = second_rail.get_homing_info()
if first_homing_info.positive_dir != second_homing_info.positive_dir:
# Carriages home away from each other
return 1 if first_homing_info.positive_dir else -1
# Carriages home in the same direction
if first_rail.position_endstop > second_rail.position_endstop:
return 1
return -1
def activate_dc_mode(self, dc, mode):
toolhead = self.printer.lookup_object("toolhead")
toolhead.flush_step_generation()
kin = toolhead.get_kinematics()
axis = dc.axis
if mode == INACTIVE:
dc.inactivate(toolhead.get_position())
elif mode == PRIMARY:
self.toggle_active_dc_rail(dc)
else:
self.toggle_active_dc_rail(self.get_dc_rail_wrapper(dc.dual_rail))
dc.activate(mode, toolhead.get_position())
kin.update_limits(axis, self.get_kin_range(toolhead, mode, axis))
def _handle_ready(self):
for dc_rail in self.dc_rails.values():
dc_rail.apply_transform()
cmd_SET_DUAL_CARRIAGE_help = "Configure the dual carriages mode"
def cmd_SET_DUAL_CARRIAGE(self, gcmd):
carriage_str = gcmd.get("CARRIAGE", None)
if carriage_str is None:
raise gcmd.error("CARRIAGE must be specified")
if carriage_str in self.dc_rails:
dc_rail = self.dc_rails[carriage_str]
else:
dc_rail = None
if len(self.dc_rails) == 2:
try:
index = int(carriage_str.strip())
if index < 0 or index > 1:
raise gcmd.error("Invalid CARRIAGE=%d index" % index)
dc_rail = (self.dual_rails if index else self.primary_rails)[0]
except ValueError:
pass
if dc_rail is None:
raise gcmd.error("Invalid CARRIAGE=%s specified" % carriage_str)
mode = gcmd.get("MODE", PRIMARY).upper()
if mode not in self.VALID_MODES:
raise gcmd.error("Invalid mode=%s specified" % (mode,))
if mode in [COPY, MIRROR]:
if dc_rail in self.primary_rails:
raise gcmd.error(
"Mode=%s is not supported for carriage=%s"
% (mode, dc_rail.get_name())
)
curtime = self.printer.get_reactor().monotonic()
kin = self.printer.lookup_object("toolhead").get_kinematics()
axis = "xyz"[dc_rail.axis]
if axis not in kin.get_status(curtime)["homed_axes"]:
raise gcmd.error(
"Axis %s must be homed prior to enabling mode=%s"
% (axis.upper(), mode)
)
self.activate_dc_mode(dc_rail, mode)
cmd_SAVE_DUAL_CARRIAGE_STATE_help = "Save dual carriages modes and positions"
def cmd_SAVE_DUAL_CARRIAGE_STATE(self, gcmd):
state_name = gcmd.get("NAME", "default")
self.saved_states[state_name] = self.save_dual_carriage_state()
def save_dual_carriage_state(self):
pos = self.printer.lookup_object("toolhead").get_position()
return {
"carriage_modes": {dc.get_name(): dc.mode for dc in self.dc_rails.values()},
"carriage_positions": {
dc.get_name(): dc.get_axis_position(pos)
for dc in self.dc_rails.values()
},
}
cmd_RESTORE_DUAL_CARRIAGE_STATE_help = "Restore dual carriages modes and positions"
def cmd_RESTORE_DUAL_CARRIAGE_STATE(self, gcmd):
state_name = gcmd.get("NAME", "default")
saved_state = self.saved_states.get(state_name)
if saved_state is None:
raise gcmd.error("Unknown DUAL_CARRIAGE state: %s" % (state_name,))
move_speed = gcmd.get_float("MOVE_SPEED", 0.0, above=0.0)
move = gcmd.get_int("MOVE", 1)
self.restore_dual_carriage_state(saved_state, move, move_speed)
def restore_dual_carriage_state(self, saved_state, move, move_speed=0.0):
toolhead = self.printer.lookup_object("toolhead")
toolhead.flush_step_generation()
if move:
homing_speed = 99999999.0
move_pos = list(toolhead.get_position())
cur_pos = []
carriage_positions = saved_state["carriage_positions"]
dcs = list(self.dc_rails.values())
for dc in dcs:
self.toggle_active_dc_rail(dc)
homing_speed = min(homing_speed, dc.rail.homing_speed)
cur_pos.append(toolhead.get_position())
dl = [
carriage_positions[dc.get_name()] - cur_pos[i][dc.axis]
for i, dc in enumerate(dcs)
]
for axis in self.axes:
dc_ind = [i for i, dc in enumerate(dcs) if dc.axis == axis]
if abs(dl[dc_ind[0]]) >= abs(dl[dc_ind[1]]):
primary_ind, secondary_ind = dc_ind[0], dc_ind[1]
else:
primary_ind, secondary_ind = dc_ind[1], dc_ind[0]
primary_dc = dcs[primary_ind]
self.toggle_active_dc_rail(primary_dc)
move_pos[axis] = carriage_positions[primary_dc.get_name()]
dc_mode = (
INACTIVE
if min(abs(dl[primary_ind]), abs(dl[secondary_ind])) < 0.000000001
else COPY if dl[primary_ind] * dl[secondary_ind] > 0 else MIRROR
)
if dc_mode != INACTIVE:
dcs[secondary_ind].activate(dc_mode, cur_pos[primary_ind])
dcs[secondary_ind].override_axis_scaling(
abs(dl[secondary_ind] / dl[primary_ind]), cur_pos[primary_ind]
)
toolhead.manual_move(move_pos, move_speed or homing_speed)
toolhead.flush_step_generation()
# Make sure the scaling coefficients are restored with the mode
for dc in dcs:
dc.inactivate(move_pos)
for dc in self.dc_rails.values():
saved_mode = saved_state["carriage_modes"][dc.get_name()]
self.activate_dc_mode(dc, saved_mode)
class DualCarriagesRail:
ENC_AXES = [b"x", b"y"]
def __init__(self, printer, rail, dual_rail, axis, active):
self.printer = printer
self.rail = rail
self.dual_rail = dual_rail
self.sks = [s.get_stepper_kinematics() for s in rail.get_steppers()]
self.axis = axis
self.mode = (INACTIVE, PRIMARY)[active]
self.offset = 0.0
self.scale = 1.0 if active else 0.0
def get_name(self):
return self.rail.get_name()
def is_active(self):
return self.mode != INACTIVE
def get_axis_position(self, position):
return position[self.axis] * self.scale + self.offset
def apply_transform(self):
ffi_main, ffi_lib = chelper.get_ffi()
for sk in self.sks:
ffi_lib.dual_carriage_set_transform(
sk, self.ENC_AXES[self.axis], self.scale, self.offset
)
self.printer.send_event("dual_carriage:update_kinematics")
def activate(self, mode, position, old_position=None):
old_axis_position = self.get_axis_position(old_position or position)
self.scale = -1.0 if mode == MIRROR else 1.0
self.offset = old_axis_position - position[self.axis] * self.scale
self.apply_transform()
self.mode = mode
def inactivate(self, position):
self.offset = self.get_axis_position(position)
self.scale = 0.0
self.apply_transform()
self.mode = INACTIVE
def override_axis_scaling(self, new_scale, position):
old_axis_position = self.get_axis_position(position)
self.scale = math.copysign(new_scale, self.scale)
self.offset = old_axis_position - position[self.axis] * self.scale
self.apply_transform()
|