1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
# Code for handling the kinematics of hybrid-corexy robots
#
# Copyright (C) 2021 Fabrice Gallet <tircown@gmail.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import stepper
from . import idex_modes
# The hybrid-corexy kinematic is also known as Markforged kinematics
class HybridCoreXYKinematics:
def __init__(self, toolhead, config):
self.printer = config.get_printer()
# itersolve parameters
self.rails = [
stepper.LookupRail(config.getsection("stepper_x")),
stepper.LookupMultiRail(config.getsection("stepper_y")),
stepper.LookupMultiRail(config.getsection("stepper_z")),
]
self.rails[1].get_endstops()[0][0].add_stepper(self.rails[0].get_steppers()[0])
self.rails[0].setup_itersolve("corexy_stepper_alloc", b"-")
self.rails[1].setup_itersolve("cartesian_stepper_alloc", b"y")
self.rails[2].setup_itersolve("cartesian_stepper_alloc", b"z")
ranges = [r.get_range() for r in self.rails]
self.axes_min = toolhead.Coord(*[r[0] for r in ranges], e=0.0)
self.axes_max = toolhead.Coord(*[r[1] for r in ranges], e=0.0)
self.dc_module = None
if config.has_section("dual_carriage"):
dc_config = config.getsection("dual_carriage")
# dummy for cartesian config users
dc_config.getchoice("axis", ["x"], default="x")
# setup second dual carriage rail
self.rails.append(stepper.LookupRail(dc_config))
self.rails[1].get_endstops()[0][0].add_stepper(
self.rails[3].get_steppers()[0]
)
self.rails[3].setup_itersolve("corexy_stepper_alloc", b"+")
self.dc_module = idex_modes.DualCarriages(
self.printer,
[self.rails[0]],
[self.rails[3]],
axes=[0],
safe_dist=dc_config.getfloat("safe_distance", None, minval=0.0),
)
for s in self.get_steppers():
s.set_trapq(toolhead.get_trapq())
toolhead.register_step_generator(s.generate_steps)
# Setup boundary checks
max_velocity, max_accel = toolhead.get_max_velocity()
self.max_z_velocity = config.getfloat(
"max_z_velocity", max_velocity, above=0.0, maxval=max_velocity
)
self.max_z_accel = config.getfloat(
"max_z_accel", max_accel, above=0.0, maxval=max_accel
)
self.limits = [(1.0, -1.0)] * 3
def get_steppers(self):
return [s for rail in self.rails for s in rail.get_steppers()]
def calc_position(self, stepper_positions):
pos = [stepper_positions[rail.get_name()] for rail in self.rails]
if (
self.dc_module is not None
and "PRIMARY" == self.dc_module.get_status()["carriage_1"]
):
return [pos[3] - pos[1], pos[1], pos[2]]
else:
return [pos[0] + pos[1], pos[1], pos[2]]
def update_limits(self, i, range):
l, h = self.limits[i]
# Only update limits if this axis was already homed,
# otherwise leave in un-homed state.
if l <= h:
self.limits[i] = range
def set_position(self, newpos, homing_axes):
for i, rail in enumerate(self.rails):
rail.set_position(newpos)
for axis_name in homing_axes:
axis = "xyz".index(axis_name)
if self.dc_module and axis == 0:
rail = self.dc_module.get_primary_rail(axis)
else:
rail = self.rails[axis]
self.limits[axis] = rail.get_range()
def clear_homing_state(self, clear_axes):
for axis, axis_name in enumerate("xyz"):
if axis_name in clear_axes:
self.limits[axis] = (1.0, -1.0)
def home_axis(self, homing_state, axis, rail):
position_min, position_max = rail.get_range()
hi = rail.get_homing_info()
homepos = [None, None, None, None]
homepos[axis] = hi.position_endstop
forcepos = list(homepos)
if hi.positive_dir:
forcepos[axis] -= 1.5 * (hi.position_endstop - position_min)
else:
forcepos[axis] += 1.5 * (position_max - hi.position_endstop)
# Perform homing
homing_state.home_rails([rail], forcepos, homepos)
def home(self, homing_state):
for axis in homing_state.get_axes():
if self.dc_module is not None and axis == 0:
self.dc_module.home(homing_state, axis)
else:
self.home_axis(homing_state, axis, self.rails[axis])
def _check_endstops(self, move):
end_pos = move.end_pos
for i in (0, 1, 2):
if move.axes_d[i] and (
end_pos[i] < self.limits[i][0] or end_pos[i] > self.limits[i][1]
):
if self.limits[i][0] > self.limits[i][1]:
raise move.move_error("Must home axis first")
raise move.move_error()
def check_move(self, move):
limits = self.limits
xpos, ypos = move.end_pos[:2]
if (
xpos < limits[0][0]
or xpos > limits[0][1]
or ypos < limits[1][0]
or ypos > limits[1][1]
):
self._check_endstops(move)
if not move.axes_d[2]:
# Normal XY move - use defaults
return
# Move with Z - update velocity and accel for slower Z axis
self._check_endstops(move)
z_ratio = move.move_d / abs(move.axes_d[2])
move.limit_speed(self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
def get_status(self, eventtime):
axes = [a for a, (l, h) in zip("xyz", self.limits) if l <= h]
return {
"homed_axes": "".join(axes),
"axis_minimum": self.axes_min,
"axis_maximum": self.axes_max,
}
def load_kinematics(toolhead, config):
return HybridCoreXYKinematics(toolhead, config)
|