aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/kinematics/cartesian.py
blob: 0ce28dbef57c262e09a21c4e8f671efc55f712a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Code for handling the kinematics of cartesian robots
#
# Copyright (C) 2016-2018  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import stepper, homing

class CartKinematics:
    def __init__(self, toolhead, config):
        self.printer = config.get_printer()
        # Setup axis rails
        self.rails = [stepper.LookupMultiRail(config.getsection('stepper_' + n))
                      for n in ['x', 'y', 'z']]
        for rail, axis in zip(self.rails, 'xyz'):
            rail.setup_itersolve('cartesian_stepper_alloc', axis)
        # Setup boundary checks
        max_velocity, max_accel = toolhead.get_max_velocity()
        self.max_z_velocity = config.getfloat(
            'max_z_velocity', max_velocity, above=0., maxval=max_velocity)
        self.max_z_accel = config.getfloat(
            'max_z_accel', max_accel, above=0., maxval=max_accel)
        self.need_motor_enable = True
        self.limits = [(1.0, -1.0)] * 3
        # Setup stepper max halt velocity
        max_halt_velocity = toolhead.get_max_axis_halt()
        self.rails[0].set_max_jerk(max_halt_velocity, max_accel)
        self.rails[1].set_max_jerk(max_halt_velocity, max_accel)
        self.rails[2].set_max_jerk(
            min(max_halt_velocity, self.max_z_velocity), max_accel)
        # Check for dual carriage support
        self.dual_carriage_axis = None
        self.dual_carriage_rails = []
        if config.has_section('dual_carriage'):
            dc_config = config.getsection('dual_carriage')
            dc_axis = dc_config.getchoice('axis', {'x': 'x', 'y': 'y'})
            self.dual_carriage_axis = {'x': 0, 'y': 1}[dc_axis]
            dc_rail = stepper.LookupMultiRail(dc_config)
            dc_rail.setup_itersolve('cartesian_stepper_alloc', dc_axis)
            dc_rail.set_max_jerk(max_halt_velocity, max_accel)
            self.dual_carriage_rails = [
                self.rails[self.dual_carriage_axis], dc_rail]
            self.printer.lookup_object('gcode').register_command(
                'SET_DUAL_CARRIAGE', self.cmd_SET_DUAL_CARRIAGE,
                desc=self.cmd_SET_DUAL_CARRIAGE_help)
    def get_steppers(self, flags=""):
        if flags == "Z":
            return self.rails[2].get_steppers()
        return [s for rail in self.rails for s in rail.get_steppers()]
    def calc_position(self):
        return [rail.get_commanded_position() for rail in self.rails]
    def set_position(self, newpos, homing_axes):
        for i, rail in enumerate(self.rails):
            rail.set_position(newpos)
            if i in homing_axes:
                self.limits[i] = rail.get_range()
    def _home_axis(self, homing_state, axis, rail):
        # Determine movement
        position_min, position_max = rail.get_range()
        hi = rail.get_homing_info()
        homepos = [None, None, None, None]
        homepos[axis] = hi.position_endstop
        forcepos = list(homepos)
        if hi.positive_dir:
            forcepos[axis] -= 1.5 * (hi.position_endstop - position_min)
        else:
            forcepos[axis] += 1.5 * (position_max - hi.position_endstop)
        # Perform homing
        limit_speed = None
        if axis == 2:
            limit_speed = self.max_z_velocity
        homing_state.home_rails([rail], forcepos, homepos, limit_speed)
    def home(self, homing_state):
        # Each axis is homed independently and in order
        for axis in homing_state.get_axes():
            if axis == self.dual_carriage_axis:
                dc1, dc2 = self.dual_carriage_rails
                altc = self.rails[axis] == dc2
                self._activate_carriage(0)
                self._home_axis(homing_state, axis, dc1)
                self._activate_carriage(1)
                self._home_axis(homing_state, axis, dc2)
                self._activate_carriage(altc)
            else:
                self._home_axis(homing_state, axis, self.rails[axis])
    def motor_off(self, print_time):
        self.limits = [(1.0, -1.0)] * 3
        for rail in self.rails:
            rail.motor_enable(print_time, 0)
        for rail in self.dual_carriage_rails:
            rail.motor_enable(print_time, 0)
        self.need_motor_enable = True
    def _check_motor_enable(self, print_time, move):
        need_motor_enable = False
        for i, rail in enumerate(self.rails):
            if move.axes_d[i]:
                rail.motor_enable(print_time, 1)
            need_motor_enable |= not rail.is_motor_enabled()
        self.need_motor_enable = need_motor_enable
    def _check_endstops(self, move):
        end_pos = move.end_pos
        for i in (0, 1, 2):
            if (move.axes_d[i]
                and (end_pos[i] < self.limits[i][0]
                     or end_pos[i] > self.limits[i][1])):
                if self.limits[i][0] > self.limits[i][1]:
                    raise homing.EndstopMoveError(
                        end_pos, "Must home axis first")
                raise homing.EndstopMoveError(end_pos)
    def check_move(self, move):
        limits = self.limits
        xpos, ypos = move.end_pos[:2]
        if (xpos < limits[0][0] or xpos > limits[0][1]
            or ypos < limits[1][0] or ypos > limits[1][1]):
            self._check_endstops(move)
        if not move.axes_d[2]:
            # Normal XY move - use defaults
            return
        # Move with Z - update velocity and accel for slower Z axis
        self._check_endstops(move)
        z_ratio = move.move_d / abs(move.axes_d[2])
        move.limit_speed(
            self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
    def move(self, print_time, move):
        if self.need_motor_enable:
            self._check_motor_enable(print_time, move)
        for i, rail in enumerate(self.rails):
            if move.axes_d[i]:
                rail.step_itersolve(move.cmove)
    # Dual carriage support
    def _activate_carriage(self, carriage):
        toolhead = self.printer.lookup_object('toolhead')
        toolhead.get_last_move_time()
        dc_rail = self.dual_carriage_rails[carriage]
        dc_axis = self.dual_carriage_axis
        self.rails[dc_axis] = dc_rail
        extruder_pos = toolhead.get_position()[3]
        toolhead.set_position(self.calc_position() + [extruder_pos])
        if self.limits[dc_axis][0] <= self.limits[dc_axis][1]:
            self.limits[dc_axis] = dc_rail.get_range()
        self.need_motor_enable = True
    cmd_SET_DUAL_CARRIAGE_help = "Set which carriage is active"
    def cmd_SET_DUAL_CARRIAGE(self, params):
        gcode = self.printer.lookup_object('gcode')
        carriage = gcode.get_int('CARRIAGE', params, minval=0, maxval=1)
        self._activate_carriage(carriage)
        gcode.reset_last_position()

def load_kinematics(toolhead, config):
    return CartKinematics(toolhead, config)