aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/kinematics/cartesian.py
blob: 4d21c6e166e04880c39a4b0bd0fd0b1725b76974 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Code for handling the kinematics of cartesian robots
#
# Copyright (C) 2016-2021  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import stepper
from . import idex_modes


class CartKinematics:
    def __init__(self, toolhead, config):
        self.printer = config.get_printer()
        # Setup axis rails
        self.dual_carriage_axis = None
        self.dual_carriage_rails = []
        self.rails = [
            stepper.LookupMultiRail(config.getsection("stepper_" + n)) for n in "xyz"
        ]
        for rail, axis in zip(self.rails, "xyz"):
            rail.setup_itersolve("cartesian_stepper_alloc", axis.encode())
        ranges = [r.get_range() for r in self.rails]
        self.axes_min = toolhead.Coord(*[r[0] for r in ranges], e=0.0)
        self.axes_max = toolhead.Coord(*[r[1] for r in ranges], e=0.0)
        self.dc_module = None
        if config.has_section("dual_carriage"):
            dc_config = config.getsection("dual_carriage")
            dc_axis = dc_config.getchoice("axis", ["x", "y"])
            self.dual_carriage_axis = {"x": 0, "y": 1}[dc_axis]
            # setup second dual carriage rail
            self.rails.append(stepper.LookupMultiRail(dc_config))
            self.rails[3].setup_itersolve("cartesian_stepper_alloc", dc_axis.encode())
            self.dc_module = idex_modes.DualCarriages(
                self.printer,
                [self.rails[self.dual_carriage_axis]],
                [self.rails[3]],
                axes=[self.dual_carriage_axis],
                safe_dist=dc_config.getfloat("safe_distance", None, minval=0.0),
            )
        for s in self.get_steppers():
            s.set_trapq(toolhead.get_trapq())
            toolhead.register_step_generator(s.generate_steps)
        # Setup boundary checks
        max_velocity, max_accel = toolhead.get_max_velocity()
        self.max_z_velocity = config.getfloat(
            "max_z_velocity", max_velocity, above=0.0, maxval=max_velocity
        )
        self.max_z_accel = config.getfloat(
            "max_z_accel", max_accel, above=0.0, maxval=max_accel
        )
        self.limits = [(1.0, -1.0)] * 3

    def get_steppers(self):
        return [s for rail in self.rails for s in rail.get_steppers()]

    def calc_position(self, stepper_positions):
        rails = self.rails
        if self.dc_module:
            primary_rail = self.dc_module.get_primary_rail(self.dual_carriage_axis)
            rails = (
                rails[: self.dual_carriage_axis]
                + [primary_rail]
                + rails[self.dual_carriage_axis + 1 :]
            )
        return [stepper_positions[rail.get_name()] for rail in rails]

    def update_limits(self, i, range):
        l, h = self.limits[i]
        # Only update limits if this axis was already homed,
        # otherwise leave in un-homed state.
        if l <= h:
            self.limits[i] = range

    def set_position(self, newpos, homing_axes):
        for i, rail in enumerate(self.rails):
            rail.set_position(newpos)
        for axis_name in homing_axes:
            axis = "xyz".index(axis_name)
            if self.dc_module and axis == self.dual_carriage_axis:
                rail = self.dc_module.get_primary_rail(self.dual_carriage_axis)
            else:
                rail = self.rails[axis]
            self.limits[axis] = rail.get_range()

    def clear_homing_state(self, clear_axes):
        for axis, axis_name in enumerate("xyz"):
            if axis_name in clear_axes:
                self.limits[axis] = (1.0, -1.0)

    def home_axis(self, homing_state, axis, rail):
        # Determine movement
        position_min, position_max = rail.get_range()
        hi = rail.get_homing_info()
        homepos = [None, None, None, None]
        homepos[axis] = hi.position_endstop
        forcepos = list(homepos)
        if hi.positive_dir:
            forcepos[axis] -= 1.5 * (hi.position_endstop - position_min)
        else:
            forcepos[axis] += 1.5 * (position_max - hi.position_endstop)
        # Perform homing
        homing_state.home_rails([rail], forcepos, homepos)

    def home(self, homing_state):
        # Each axis is homed independently and in order
        for axis in homing_state.get_axes():
            if self.dc_module is not None and axis == self.dual_carriage_axis:
                self.dc_module.home(homing_state, self.dual_carriage_axis)
            else:
                self.home_axis(homing_state, axis, self.rails[axis])

    def _check_endstops(self, move):
        end_pos = move.end_pos
        for i in (0, 1, 2):
            if move.axes_d[i] and (
                end_pos[i] < self.limits[i][0] or end_pos[i] > self.limits[i][1]
            ):
                if self.limits[i][0] > self.limits[i][1]:
                    raise move.move_error("Must home axis first")
                raise move.move_error()

    def check_move(self, move):
        limits = self.limits
        xpos, ypos = move.end_pos[:2]
        if (
            xpos < limits[0][0]
            or xpos > limits[0][1]
            or ypos < limits[1][0]
            or ypos > limits[1][1]
        ):
            self._check_endstops(move)
        if not move.axes_d[2]:
            # Normal XY move - use defaults
            return
        # Move with Z - update velocity and accel for slower Z axis
        self._check_endstops(move)
        z_ratio = move.move_d / abs(move.axes_d[2])
        move.limit_speed(self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)

    def get_status(self, eventtime):
        axes = [a for a, (l, h) in zip("xyz", self.limits) if l <= h]
        return {
            "homed_axes": "".join(axes),
            "axis_minimum": self.axes_min,
            "axis_maximum": self.axes_max,
        }


def load_kinematics(toolhead, config):
    return CartKinematics(toolhead, config)