aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/extruder.py
blob: 12f77d85e7439ef2bf608ac1c4c71473037abdc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Code for handling printer nozzle extruders
#
# Copyright (C) 2016  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import stepper, heater, homing

class PrinterExtruder:
    def __init__(self, printer, config):
        self.heater = heater.PrinterHeater(printer, config)
        self.stepper = stepper.PrinterStepper(printer, config, 'extruder')
        self.pressure_advance = config.getfloat('pressure_advance', 0.)
        self.max_e_velocity = config.getfloat('max_velocity')
        self.max_e_accel = config.getfloat('max_accel')
        self.need_motor_enable = True
        self.extrude_pos = 0.
    def build_config(self):
        self.heater.build_config()
        self.stepper.set_max_jerk(9999999.9, 9999999.9)
        self.stepper.build_config()
    def motor_off(self, move_time):
        self.stepper.motor_enable(move_time, 0)
        self.need_motor_enable = True
    def check_move(self, move):
        if not self.heater.can_extrude:
            raise homing.EndstopMoveError(
                move.end_pos, "Extrude below minimum temp")
        if (not move.do_calc_junction
            and not move.axes_d[0] and not move.axes_d[1]
            and not move.axes_d[2]):
            # Extrude only move - limit accel and velocity
            move.limit_speed(self.max_e_velocity, self.max_e_accel)
    def move(self, move_time, move):
        if self.need_motor_enable:
            self.stepper.motor_enable(move_time, 1)
            self.need_motor_enable = False
        axis_d = move.axes_d[3]
        extrude_r = abs(axis_d) / move.move_d
        inv_accel = 1. / (move.accel * extrude_r)

        start_v = move.start_v * extrude_r
        cruise_v = move.cruise_v * extrude_r
        end_v = move.end_v * extrude_r
        accel_t, cruise_t, decel_t = move.accel_t, move.cruise_t, move.decel_t
        accel_d = move.accel_r * axis_d
        cruise_d = move.cruise_r * axis_d
        decel_d = move.decel_r * axis_d

        retract_t = retract_d = retract_v = 0.
        decel_v = cruise_v

        # Update for pressure advance
        start_pos = self.extrude_pos
        if (axis_d >= 0. and (move.axes_d[0] or move.axes_d[1])
            and self.pressure_advance):
            # Increase accel_d and start_v when accelerating
            move_extrude_r = move.extrude_r
            prev_pressure_d = start_pos - move.start_pos[3]
            if accel_t:
                npd = move.cruise_v * move_extrude_r * self.pressure_advance
                extra_accel_d = npd - prev_pressure_d
                if extra_accel_d > 0.:
                    accel_d += extra_accel_d
                    start_v += extra_accel_d / accel_t
                    prev_pressure_d += extra_accel_d
            # Update decel and retract parameters when decelerating
            if decel_t:
                if move.corner_min:
                    npd = move.corner_max*move_extrude_r * self.pressure_advance
                    extra_decel_d = prev_pressure_d - npd
                    if move.end_v > move.corner_min:
                        extra_decel_d *= ((move.cruise_v - move.end_v)
                                          / (move.cruise_v - move.corner_min))
                else:
                    npd = move.end_v * move_extrude_r * self.pressure_advance
                    extra_decel_d = prev_pressure_d - npd
                if extra_decel_d > 0.:
                    extra_decel_v = extra_decel_d / decel_t
                    decel_v -= extra_decel_v
                    end_v -= extra_decel_v
                    if decel_v <= 0.:
                        # The entire decel phase is replaced with retraction
                        retract_t = decel_t
                        retract_d = -(end_v + decel_v) * 0.5 * decel_t
                        retract_v = -decel_v
                        decel_t = decel_d = 0.
                    elif end_v < 0.:
                        # Split decel phase into decel and retraction
                        retract_t = -end_v * inv_accel
                        retract_d = -end_v * 0.5 * retract_t
                        decel_t -= retract_t
                        decel_d = decel_v * 0.5 * decel_t
                    else:
                        # There is still only a decel phase (no retraction)
                        decel_d -= extra_decel_d

        # Prepare for steps
        inv_step_dist = self.stepper.inv_step_dist
        step_dist = self.stepper.step_dist
        mcu_stepper = self.stepper.mcu_stepper
        mcu_time = mcu_stepper.print_to_mcu_time(move_time)
        step_pos = mcu_stepper.commanded_position
        step_offset = step_pos - start_pos * inv_step_dist

        # Acceleration steps
        accel_multiplier = 2.0 * step_dist * inv_accel
        if accel_d:
            #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
            accel_time_offset = start_v * inv_accel
            accel_sqrt_offset = accel_time_offset**2
            accel_steps = accel_d * inv_step_dist
            count = mcu_stepper.step_sqrt(
                mcu_time - accel_time_offset, accel_steps, step_offset
                , accel_sqrt_offset, accel_multiplier)
            step_offset += count - accel_steps
            mcu_time += accel_t
        # Cruising steps
        if cruise_d:
            #t = pos/cruise_v
            cruise_multiplier = step_dist / cruise_v
            cruise_steps = cruise_d * inv_step_dist
            count = mcu_stepper.step_factor(
                mcu_time, cruise_steps, step_offset, cruise_multiplier)
            step_offset += count - cruise_steps
            mcu_time += cruise_t
        # Deceleration steps
        if decel_d:
            #t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
            decel_time_offset = decel_v * inv_accel
            decel_sqrt_offset = decel_time_offset**2
            decel_steps = decel_d * inv_step_dist
            count = mcu_stepper.step_sqrt(
                mcu_time + decel_time_offset, decel_steps, step_offset
                , decel_sqrt_offset, -accel_multiplier)
            step_offset += count - decel_steps
            mcu_time += decel_t
        # Retraction steps
        if retract_d:
            #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
            accel_time_offset = retract_v * inv_accel
            accel_sqrt_offset = accel_time_offset**2
            accel_steps = -retract_d * inv_step_dist
            count = mcu_stepper.step_sqrt(
                mcu_time - accel_time_offset, accel_steps, step_offset
                , accel_sqrt_offset, accel_multiplier)

        self.extrude_pos = start_pos + accel_d + cruise_d + decel_d - retract_d