aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/extruder.py
blob: c59bee14b38ff8e4ecff26684cb14f59dd50ffbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Code for handling printer nozzle extruders
#
# Copyright (C) 2016  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, heater, homing

EXTRUDE_DIFF_IGNORE = 1.02

class PrinterExtruder:
    def __init__(self, printer, config):
        self.config = config
        self.heater = heater.PrinterHeater(printer, config)
        self.stepper = stepper.PrinterStepper(printer, config, 'extruder')
        nozzle_diameter = config.getfloat('nozzle_diameter')
        filament_diameter = config.getfloat('filament_diameter')
        filament_area = math.pi * (filament_diameter * .5)**2
        max_cross_section = config.getfloat(
            'max_extrude_cross_section', 4. * nozzle_diameter**2)
        self.max_extrude_ratio = max_cross_section / filament_area
        self.max_e_dist = config.getfloat('max_extrude_only_distance', 50.)
        self.max_e_velocity = self.max_e_accel = None
        self.pressure_advance = config.getfloat('pressure_advance', 0.)
        self.pressure_advance_lookahead_time = 0.
        if self.pressure_advance:
            self.pressure_advance_lookahead_time = config.getfloat(
                'pressure_advance_lookahead_time', 0.010)
        self.need_motor_enable = True
        self.extrude_pos = 0.
    def set_max_jerk(self, max_xy_halt_velocity, max_velocity, max_accel):
        self.max_e_velocity = self.config.getfloat(
            'max_extrude_only_velocity', max_velocity * self.max_extrude_ratio)
        self.max_e_accel = self.config.getfloat(
            'max_extrude_only_accel', max_accel * self.max_extrude_ratio)
    def build_config(self):
        self.heater.build_config()
        self.stepper.set_max_jerk(9999999.9, 9999999.9)
        self.stepper.build_config()
    def motor_off(self, move_time):
        self.stepper.motor_enable(move_time, 0)
        self.need_motor_enable = True
    def check_move(self, move):
        move.extrude_r = move.axes_d[3] / move.move_d
        move.extrude_max_corner_v = 0.
        if not self.heater.can_extrude:
            raise homing.EndstopMoveError(
                move.end_pos, "Extrude below minimum temp")
        if not move.is_kinematic_move:
            # Extrude only move - limit accel and velocity
            if move.axes_d[3] > self.max_e_dist:
                raise homing.EndstopMoveError(
                    move.end_pos, "Extrude only move too long")
            move.limit_speed(self.max_e_velocity, self.max_e_accel)
        elif move.extrude_r > self.max_extrude_ratio:
            logging.debug("%s vs %s" % (move.extrude_r, self.max_extrude_ratio))
            raise homing.EndstopMoveError(
                move.end_pos, "Move exceeds maximum extrusion cross section")
    def calc_junction(self, prev_move, move):
        if move.axes_d[3] or prev_move.axes_d[3]:
            if (not move.axes_d[3] or not prev_move.axes_d[3]
                or move.extrude_r > prev_move.extrude_r * EXTRUDE_DIFF_IGNORE
                or prev_move.extrude_r > move.extrude_r * EXTRUDE_DIFF_IGNORE):
                # Extrude ratio between moves is too different
                return 0.
            move.extrude_r = prev_move.extrude_r
        return move.max_cruise_v2
    def lookahead(self, moves, flush_count, lazy):
        lookahead_t = self.pressure_advance_lookahead_time
        if not lookahead_t:
            return flush_count
        # Calculate max_corner_v - the speed the head will accelerate
        # to after cornering.
        for i in range(flush_count):
            move = moves[i]
            if not move.decel_t:
                continue
            cruise_v = move.cruise_v
            max_corner_v = 0.
            sum_t = lookahead_t
            for j in range(i+1, flush_count):
                fmove = moves[j]
                if not fmove.max_start_v2:
                    break
                if fmove.cruise_v > max_corner_v:
                    if (not max_corner_v
                        and not fmove.accel_t and not fmove.cruise_t):
                        # Start timing after any full decel moves
                        continue
                    if sum_t >= fmove.accel_t:
                        max_corner_v = fmove.cruise_v
                    else:
                        max_corner_v = max(
                            max_corner_v, fmove.start_v + fmove.accel * sum_t)
                    if max_corner_v >= cruise_v:
                        break
                sum_t -= fmove.accel_t + fmove.cruise_t + fmove.decel_t
                if sum_t <= 0.:
                    break
            else:
                if lazy:
                    return i
            move.extrude_max_corner_v = max_corner_v
        return flush_count
    def move(self, move_time, move):
        if self.need_motor_enable:
            self.stepper.motor_enable(move_time, 1)
            self.need_motor_enable = False
        axis_d = move.axes_d[3]
        extrude_r = abs(axis_d) / move.move_d
        inv_accel = 1. / (move.accel * extrude_r)

        start_v = move.start_v * extrude_r
        cruise_v = move.cruise_v * extrude_r
        end_v = move.end_v * extrude_r
        accel_t, cruise_t, decel_t = move.accel_t, move.cruise_t, move.decel_t
        accel_d = move.accel_r * axis_d
        cruise_d = move.cruise_r * axis_d
        decel_d = move.decel_r * axis_d

        retract_t = retract_d = retract_v = 0.
        decel_v = cruise_v

        # Update for pressure advance
        start_pos = self.extrude_pos
        if (axis_d >= 0. and (move.axes_d[0] or move.axes_d[1])
            and self.pressure_advance):
            # Increase accel_d and start_v when accelerating
            pressure_advance = self.pressure_advance * move.extrude_r
            prev_pressure_d = start_pos - move.start_pos[3]
            if accel_d:
                npd = move.cruise_v * pressure_advance
                extra_accel_d = npd - prev_pressure_d
                if extra_accel_d > 0.:
                    accel_d += extra_accel_d
                    start_v += extra_accel_d / accel_t
                    prev_pressure_d += extra_accel_d
            # Update decel and retract parameters when decelerating
            emcv = move.extrude_max_corner_v
            if decel_d and emcv < move.cruise_v:
                npd = max(emcv, move.end_v) * pressure_advance
                extra_decel_d = prev_pressure_d - npd
                if extra_decel_d > 0.:
                    extra_decel_v = extra_decel_d / decel_t
                    decel_v -= extra_decel_v
                    end_v -= extra_decel_v
                    if decel_v <= 0.:
                        # The entire decel phase is replaced with retraction
                        retract_t = decel_t
                        retract_d = -(end_v + decel_v) * 0.5 * decel_t
                        retract_v = -decel_v
                        decel_t = decel_d = 0.
                    elif end_v < 0.:
                        # Split decel phase into decel and retraction
                        retract_t = -end_v * inv_accel
                        retract_d = -end_v * 0.5 * retract_t
                        decel_t -= retract_t
                        decel_d = decel_v * 0.5 * decel_t
                    else:
                        # There is still only a decel phase (no retraction)
                        decel_d -= extra_decel_d

        # Prepare for steps
        inv_step_dist = self.stepper.inv_step_dist
        step_dist = self.stepper.step_dist
        mcu_stepper = self.stepper.mcu_stepper
        mcu_time = mcu_stepper.print_to_mcu_time(move_time)
        step_pos = mcu_stepper.commanded_position
        step_offset = step_pos - start_pos * inv_step_dist

        # Acceleration steps
        accel_multiplier = 2.0 * step_dist * inv_accel
        if accel_d:
            #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
            accel_time_offset = start_v * inv_accel
            accel_sqrt_offset = accel_time_offset**2
            accel_steps = accel_d * inv_step_dist
            count = mcu_stepper.step_sqrt(
                mcu_time - accel_time_offset, accel_steps, step_offset
                , accel_sqrt_offset, accel_multiplier)
            step_offset += count - accel_steps
            mcu_time += accel_t
        # Cruising steps
        if cruise_d:
            #t = pos/cruise_v
            cruise_multiplier = step_dist / cruise_v
            cruise_steps = cruise_d * inv_step_dist
            count = mcu_stepper.step_factor(
                mcu_time, cruise_steps, step_offset, cruise_multiplier)
            step_offset += count - cruise_steps
            mcu_time += cruise_t
        # Deceleration steps
        if decel_d:
            #t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
            decel_time_offset = decel_v * inv_accel
            decel_sqrt_offset = decel_time_offset**2
            decel_steps = decel_d * inv_step_dist
            count = mcu_stepper.step_sqrt(
                mcu_time + decel_time_offset, decel_steps, step_offset
                , decel_sqrt_offset, -accel_multiplier)
            step_offset += count - decel_steps
            mcu_time += decel_t
        # Retraction steps
        if retract_d:
            #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
            accel_time_offset = retract_v * inv_accel
            accel_sqrt_offset = accel_time_offset**2
            accel_steps = -retract_d * inv_step_dist
            count = mcu_stepper.step_sqrt(
                mcu_time - accel_time_offset, accel_steps, step_offset
                , accel_sqrt_offset, accel_multiplier)

        self.extrude_pos = start_pos + accel_d + cruise_d + decel_d - retract_d

# Dummy extruder class used when a printer has no extruder at all
class DummyExtruder:
    def set_max_jerk(self, max_xy_halt_velocity, max_velocity, max_accel):
        pass
    def motor_off(self, move_time):
        pass
    def check_move(self, move):
        raise homing.EndstopMoveError(
            move.end_pos, "Extrude when no extruder present")
    def calc_junction(self, prev_move, move):
        return move.max_cruise_v2
    def lookahead(self, moves, flush_count, lazy):
        return flush_count