1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
# Probe temperature sensor and drift calibration
#
# Copyright (C) 2024 Eric Callahan <arksine.code@gmail.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
from . import manual_probe
KELVIN_TO_CELSIUS = -273.15
######################################################################
# Polynomial Helper Classes and Functions
######################################################################
def calc_determinant(matrix):
m = matrix
aei = m[0][0] * m[1][1] * m[2][2]
bfg = m[1][0] * m[2][1] * m[0][2]
cdh = m[2][0] * m[0][1] * m[1][2]
ceg = m[2][0] * m[1][1] * m[0][2]
bdi = m[1][0] * m[0][1] * m[2][2]
afh = m[0][0] * m[2][1] * m[1][2]
return aei + bfg + cdh - ceg - bdi - afh
class Polynomial2d:
def __init__(self, a, b, c):
self.a = a
self.b = b
self.c = c
def __call__(self, xval):
return self.c * xval * xval + self.b * xval + self.a
def get_coefs(self):
return (self.a, self.b, self.c)
def __str__(self):
return "%f, %f, %f" % (self.a, self.b, self.c)
def __repr__(self):
parts = ["y(x) ="]
deg = 2
for i, coef in enumerate((self.c, self.b, self.a)):
if round(coef, 8) == int(coef):
coef = int(coef)
if abs(coef) < 1e-10:
continue
cur_deg = deg - i
x_str = "x^%d" % (cur_deg,) if cur_deg > 1 else "x" * cur_deg
if len(parts) == 1:
parts.append("%f%s" % (coef, x_str))
else:
sym = "-" if coef < 0 else "+"
parts.append("%s %f%s" % (sym, abs(coef), x_str))
return " ".join(parts)
@classmethod
def fit(cls, coords):
xlist = [c[0] for c in coords]
ylist = [c[1] for c in coords]
count = len(coords)
sum_x = sum(xlist)
sum_y = sum(ylist)
sum_x2 = sum([x**2 for x in xlist])
sum_x3 = sum([x**3 for x in xlist])
sum_x4 = sum([x**4 for x in xlist])
sum_xy = sum([x * y for x, y in coords])
sum_x2y = sum([y*x**2 for x, y in coords])
vector_b = [sum_y, sum_xy, sum_x2y]
m = [
[count, sum_x, sum_x2],
[sum_x, sum_x2, sum_x3],
[sum_x2, sum_x3, sum_x4]
]
m0 = [vector_b, m[1], m[2]]
m1 = [m[0], vector_b, m[2]]
m2 = [m[0], m[1], vector_b]
det_m = calc_determinant(m)
a0 = calc_determinant(m0) / det_m
a1 = calc_determinant(m1) / det_m
a2 = calc_determinant(m2) / det_m
return cls(a0, a1, a2)
class TemperatureProbe:
def __init__(self, config):
self.name = config.get_name()
self.printer = config.get_printer()
self.gcode = self.printer.lookup_object("gcode")
self.speed = config.getfloat("speed", None, above=0.)
self.horizontal_move_z = config.getfloat(
"horizontal_move_z", 2., above=0.
)
self.resting_z = config.getfloat("resting_z", .4, above=0.)
self.cal_pos = config.getfloatlist(
"calibration_position", None, count=3
)
self.cal_bed_temp = config.getfloat(
"calibration_bed_temp", None, above=50.
)
self.cal_extruder_temp = config.getfloat(
"calibration_extruder_temp", None, above=50.
)
self.cal_extruder_z = config.getfloat(
"extruder_heating_z", 50., above=0.
)
# Setup temperature sensor
smooth_time = config.getfloat("smooth_time", 2., above=0.)
self.inv_smooth_time = 1. / smooth_time
self.min_temp = config.getfloat(
"min_temp", KELVIN_TO_CELSIUS, minval=KELVIN_TO_CELSIUS
)
self.max_temp = config.getfloat(
"max_temp", 99999999.9, above=self.min_temp
)
pheaters = self.printer.load_object(config, "heaters")
self.sensor = pheaters.setup_sensor(config)
self.sensor.setup_minmax(self.min_temp, self.max_temp)
self.sensor.setup_callback(self._temp_callback)
pheaters.register_sensor(config, self)
self.last_temp_read_time = 0.
self.last_measurement = (0., 99999999., 0.,)
# Calibration State
self.cal_helper = None
self.next_auto_temp = 99999999.
self.target_temp = 0
self.expected_count = 0
self.sample_count = 0
self.in_calibration = False
self.step = 2.
self.last_zero_pos = None
self.total_expansion = 0
self.start_pos = []
# Register GCode Commands
pname = self.name.split(maxsplit=1)[-1]
self.gcode.register_mux_command(
"TEMPERATURE_PROBE_CALIBRATE", "PROBE", pname,
self.cmd_TEMPERATURE_PROBE_CALIBRATE,
desc=self.cmd_TEMPERATURE_PROBE_CALIBRATE_help
)
self.gcode.register_mux_command(
"TEMPERATURE_PROBE_ENABLE", "PROBE", pname,
self.cmd_TEMPERATURE_PROBE_ENABLE,
desc=self.cmd_TEMPERATURE_PROBE_ENABLE_help
)
# Register Drift Compensation Helper with probe
full_probe_name = "probe_eddy_current %s" % (pname,)
if config.has_section(full_probe_name):
pprobe = self.printer.load_object(config, full_probe_name)
self.cal_helper = EddyDriftCompensation(config, self)
pprobe.register_drift_compensation(self.cal_helper)
logging.info(
"%s: registered drift compensation with probe [%s]"
% (self.name, full_probe_name)
)
else:
logging.info(
"%s: No probe named %s configured, thermal drift compensation "
"disabled." % (self.name, pname)
)
def _temp_callback(self, read_time, temp):
smoothed_temp, measured_min, measured_max = self.last_measurement
time_diff = read_time - self.last_temp_read_time
self.last_temp_read_time = read_time
temp_diff = temp - smoothed_temp
adj_time = min(time_diff * self.inv_smooth_time, 1.)
smoothed_temp += temp_diff * adj_time
measured_min = min(measured_min, smoothed_temp)
measured_max = max(measured_max, smoothed_temp)
self.last_measurement = (smoothed_temp, measured_min, measured_max)
if self.in_calibration and smoothed_temp >= self.next_auto_temp:
self.printer.get_reactor().register_async_callback(
self._check_kick_next
)
def _check_kick_next(self, eventtime):
smoothed_temp = self.last_measurement[0]
if self.in_calibration and smoothed_temp >= self.next_auto_temp:
self.next_auto_temp = 99999999.
self.gcode.run_script("TEMPERATURE_PROBE_NEXT")
def get_temp(self, eventtime=None):
return self.last_measurement[0], self.target_temp
def _collect_sample(self, kin_pos, tool_zero_z):
probe = self._get_probe()
x_offset, y_offset, _ = probe.get_offsets()
speeds = self._get_speeds()
lift_speed, _, move_speed = speeds
toolhead = self.printer.lookup_object("toolhead")
cur_pos = toolhead.get_position()
# Move to probe to sample collection position
cur_pos[2] += self.horizontal_move_z
toolhead.manual_move(cur_pos, lift_speed)
cur_pos[0] -= x_offset
cur_pos[1] -= y_offset
toolhead.manual_move(cur_pos, move_speed)
return self.cal_helper.collect_sample(kin_pos, tool_zero_z, speeds)
def _prepare_next_sample(self, last_temp, tool_zero_z):
# Register our own abort command now that the manual
# probe has finished and unregistered
self.gcode.register_command(
"ABORT", self.cmd_TEMPERATURE_PROBE_ABORT,
desc=self.cmd_TEMPERATURE_PROBE_ABORT_help
)
probe_speed = self._get_speeds()[1]
# Move tool down to the resting position
toolhead = self.printer.lookup_object("toolhead")
cur_pos = toolhead.get_position()
cur_pos[2] = tool_zero_z + self.resting_z
toolhead.manual_move(cur_pos, probe_speed)
cnt, exp_cnt = self.sample_count, self.expected_count
self.next_auto_temp = last_temp + self.step
self.gcode.respond_info(
"%s: collected sample %d/%d at temp %.2fC, next sample scheduled "
"at temp %.2fC"
% (self.name, cnt, exp_cnt, last_temp, self.next_auto_temp)
)
def _manual_probe_finalize(self, kin_pos):
if kin_pos is None:
# Calibration aborted
self._finalize_drift_cal(False)
return
if self.last_zero_pos is not None:
z_diff = self.last_zero_pos[2] - kin_pos[2]
self.total_expansion += z_diff
logging.info(
"Estimated Total Thermal Expansion: %.6f"
% (self.total_expansion,)
)
self.last_zero_pos = kin_pos
toolhead = self.printer.lookup_object("toolhead")
tool_zero_z = toolhead.get_position()[2]
try:
last_temp = self._collect_sample(kin_pos, tool_zero_z)
except Exception:
self._finalize_drift_cal(False)
raise
self.sample_count += 1
if last_temp >= self.target_temp:
# Calibration Done
self._finalize_drift_cal(True)
else:
try:
self._prepare_next_sample(last_temp, tool_zero_z)
if self.sample_count == 1:
self._set_bed_temp(self.cal_bed_temp)
except Exception:
self._finalize_drift_cal(False)
raise
def _finalize_drift_cal(self, success, msg=None):
self.next_auto_temp = 99999999.
self.target_temp = 0
self.expected_count = 0
self.sample_count = 0
self.step = 2.
self.in_calibration = False
self.last_zero_pos = None
self.total_expansion = 0
self.start_pos = []
# Unregister Temporary Commands
self.gcode.register_command("ABORT", None)
self.gcode.register_command("TEMPERATURE_PROBE_NEXT", None)
self.gcode.register_command("TEMPERATURE_PROBE_COMPLETE", None)
# Turn off heaters
self._set_extruder_temp(0)
self._set_bed_temp(0)
try:
self.cal_helper.finish_calibration(success)
except self.gcode.error as e:
success = False
msg = str(e)
if not success:
msg = msg or "%s: calibration aborted" % (self.name,)
self.gcode.respond_info(msg)
def _get_probe(self):
probe = self.printer.lookup_object("probe")
if probe is None:
raise self.gcode.error("No probe configured")
return probe
def _set_extruder_temp(self, temp, wait=False):
if self.cal_extruder_temp is None:
# Extruder temperature not configured
return
toolhead = self.printer.lookup_object("toolhead")
extr_name = toolhead.get_extruder().get_name()
self.gcode.run_script_from_command(
"SET_HEATER_TEMPERATURE HEATER=%s TARGET=%f"
% (extr_name, temp)
)
if wait:
self.gcode.run_script_from_command(
"TEMPERATURE_WAIT SENSOR=%s MINIMUM=%f"
% (extr_name, temp)
)
def _set_bed_temp(self, temp):
if self.cal_bed_temp is None:
# Bed temperature not configured
return
self.gcode.run_script_from_command(
"SET_HEATER_TEMPERATURE HEATER=heater_bed TARGET=%f"
% (temp,)
)
def _check_homed(self):
toolhead = self.printer.lookup_object("toolhead")
reactor = self.printer.get_reactor()
status = toolhead.get_status(reactor.monotonic())
h_axes = status["homed_axes"]
for axis in "xyz":
if axis not in h_axes:
raise self.gcode.error(
"Printer must be homed before calibration"
)
def _move_to_start(self):
toolhead = self.printer.lookup_object("toolhead")
cur_pos = toolhead.get_position()
move_speed = self._get_speeds()[2]
if self.cal_pos is not None:
if self.cal_extruder_temp is not None:
# Move to extruder heating z position
cur_pos[2] = self.cal_extruder_z
toolhead.manual_move(cur_pos, move_speed)
toolhead.manual_move(self.cal_pos[:2], move_speed)
self._set_extruder_temp(self.cal_extruder_temp, True)
toolhead.manual_move(self.cal_pos, move_speed)
elif self.cal_extruder_temp is not None:
cur_pos[2] = self.cal_extruder_z
toolhead.manual_move(cur_pos, move_speed)
self._set_extruder_temp(self.cal_extruder_temp, True)
def _get_speeds(self):
pparams = self._get_probe().get_probe_params()
probe_speed = pparams["probe_speed"]
lift_speed = pparams["lift_speed"]
move_speed = self.speed or max(probe_speed, lift_speed)
return lift_speed, probe_speed, move_speed
cmd_TEMPERATURE_PROBE_CALIBRATE_help = (
"Calibrate probe temperature drift compensation"
)
def cmd_TEMPERATURE_PROBE_CALIBRATE(self, gcmd):
if self.cal_helper is None:
raise gcmd.error(
"No calibration helper registered for [%s]"
% (self.name,)
)
self._check_homed()
probe = self._get_probe()
probe_name = probe.get_status(None)["name"]
short_name = probe_name.split(maxsplit=1)[-1]
if short_name != self.name.split(maxsplit=1)[-1]:
raise self.gcode.error(
"[%s] not linked to registered probe [%s]."
% (self.name, probe_name)
)
manual_probe.verify_no_manual_probe(self.printer)
if self.in_calibration:
raise gcmd.error(
"Already in probe drift calibration. Use "
"TEMPERATURE_PROBE_COMPLETE or ABORT to exit."
)
cur_temp = self.last_measurement[0]
target_temp = gcmd.get_float("TARGET", above=cur_temp)
step = gcmd.get_float("STEP", 2., minval=1.0)
expected_count = int(
(target_temp - cur_temp) / step + .5
)
if expected_count < 3:
raise gcmd.error(
"Invalid STEP and/or TARGET parameters resulted "
"in too few expected samples: %d"
% (expected_count,)
)
try:
self.gcode.register_command(
"TEMPERATURE_PROBE_NEXT", self.cmd_TEMPERATURE_PROBE_NEXT,
desc=self.cmd_TEMPERATURE_PROBE_NEXT_help
)
self.gcode.register_command(
"TEMPERATURE_PROBE_COMPLETE",
self.cmd_TEMPERATURE_PROBE_COMPLETE,
desc=self.cmd_TEMPERATURE_PROBE_NEXT_help
)
except self.printer.config_error:
raise gcmd.error(
"Auxiliary Probe Drift Commands already registered. Use "
"TEMPERATURE_PROBE_COMPLETE or ABORT to exit."
)
self.in_calibration = True
self.cal_helper.start_calibration()
self.target_temp = target_temp
self.step = step
self.sample_count = 0
self.expected_count = expected_count
# If configured move to heating position and turn on extruder
try:
self._move_to_start()
except self.printer.command_error:
self._finalize_drift_cal(False, "Error during initial move")
raise
# Capture start position and begin initial probe
toolhead = self.printer.lookup_object("toolhead")
self.start_pos = toolhead.get_position()[:2]
manual_probe.ManualProbeHelper(
self.printer, gcmd, self._manual_probe_finalize
)
cmd_TEMPERATURE_PROBE_NEXT_help = "Sample next probe drift temperature"
def cmd_TEMPERATURE_PROBE_NEXT(self, gcmd):
manual_probe.verify_no_manual_probe(self.printer)
self.next_auto_temp = 99999999.
toolhead = self.printer.lookup_object("toolhead")
# Lift and Move to nozzle back to start position
curpos = toolhead.get_position()
start_z = curpos[2]
lift_speed, probe_speed, move_speed = self._get_speeds()
# Move nozzle to the manual probing position
curpos[2] += self.horizontal_move_z
toolhead.manual_move(curpos, lift_speed)
curpos[0] = self.start_pos[0]
curpos[1] = self.start_pos[1]
toolhead.manual_move(curpos, move_speed)
curpos[2] = start_z
toolhead.manual_move(curpos, probe_speed)
self.gcode.register_command("ABORT", None)
manual_probe.ManualProbeHelper(
self.printer, gcmd, self._manual_probe_finalize
)
cmd_TEMPERATURE_PROBE_COMPLETE_help = "Finish Probe Drift Calibration"
def cmd_TEMPERATURE_PROBE_COMPLETE(self, gcmd):
manual_probe.verify_no_manual_probe(self.printer)
self._finalize_drift_cal(self.sample_count >= 3)
cmd_TEMPERATURE_PROBE_ABORT_help = "Abort Probe Drift Calibration"
def cmd_TEMPERATURE_PROBE_ABORT(self, gcmd):
self._finalize_drift_cal(False)
cmd_TEMPERATURE_PROBE_ENABLE_help = (
"Set adjustment factor applied to drift correction"
)
def cmd_TEMPERATURE_PROBE_ENABLE(self, gcmd):
if self.cal_helper is not None:
self.cal_helper.set_enabled(gcmd)
def is_in_calibration(self):
return self.in_calibration
def get_status(self, eventtime=None):
smoothed_temp, measured_min, measured_max = self.last_measurement
dcomp_enabled = False
if self.cal_helper is not None:
dcomp_enabled = self.cal_helper.is_enabled()
return {
"temperature": smoothed_temp,
"measured_min_temp": round(measured_min, 2),
"measured_max_temp": round(measured_max, 2),
"in_calibration": self.in_calibration,
"estimated_expansion": self.total_expansion,
"compensation_enabled": dcomp_enabled
}
def stats(self, eventtime):
return False, '%s: temp=%.1f' % (self.name, self.last_measurement[0])
#####################################################################
#
# Eddy Current Probe Drift Compensation Helper
#
#####################################################################
DRIFT_SAMPLE_COUNT = 9
class EddyDriftCompensation:
def __init__(self, config, sensor):
self.printer = config.get_printer()
self.temp_sensor = sensor
self.name = config.get_name()
self.cal_temp = config.getfloat("calibration_temp", 0.)
self.drift_calibration = None
self.calibration_samples = None
self.max_valid_temp = config.getfloat("max_validation_temp", 60.)
self.dc_min_temp = config.getfloat("drift_calibration_min_temp", 0.)
dc = config.getlists(
"drift_calibration", None, seps=(',', '\n'), parser=float
)
self.min_freq = 999999999999.
if dc is not None:
for coefs in dc:
if len(coefs) != 3:
raise config.error(
"Invalid polynomial in drift calibration"
)
self.drift_calibration = [Polynomial2d(*coefs) for coefs in dc]
cal = self.drift_calibration
start_temp, end_temp = self.dc_min_temp, self.max_valid_temp
self._check_calibration(cal, start_temp, end_temp, config.error)
low_poly = self.drift_calibration[-1]
self.min_freq = min([low_poly(temp) for temp in range(121)])
cal_str = "\n".join([repr(p) for p in cal])
logging.info(
"%s: loaded temperature drift calibration. Min Temp: %.2f,"
" Min Freq: %.6f\n%s"
% (self.name, self.dc_min_temp, self.min_freq, cal_str)
)
else:
logging.info(
"%s: No drift calibration configured, disabling temperature "
"drift compensation"
% (self.name,)
)
self.enabled = has_dc = self.drift_calibration is not None
if self.cal_temp < 1e-6 and has_dc:
self.enabled = False
logging.info(
"%s: No temperature saved for eddy probe calibration, "
"disabling temperature drift compensation."
% (self.name,)
)
def is_enabled(self):
return self.enabled
def set_enabled(self, gcmd):
enabled = gcmd.get_int("ENABLE")
if enabled:
if self.drift_calibration is None:
raise gcmd.error(
"No drift calibration configured, cannot enable "
"temperature drift compensation"
)
if self.cal_temp < 1e-6:
raise gcmd.error(
"Z Calibration temperature not configured, cannot enable "
"temperature drift compensation"
)
self.enabled = enabled
def note_z_calibration_start(self):
self.cal_temp = self.get_temperature()
def note_z_calibration_finish(self):
self.cal_temp = (self.cal_temp + self.get_temperature()) / 2.0
configfile = self.printer.lookup_object('configfile')
configfile.set(self.name, "calibration_temp", "%.6f " % (self.cal_temp))
gcode = self.printer.lookup_object("gcode")
gcode.respond_info(
"%s: Z Calibration Temperature set to %.2f. "
"The SAVE_CONFIG command will update the printer config "
"file and restart the printer."
% (self.name, self.cal_temp)
)
def collect_sample(self, kin_pos, tool_zero_z, speeds):
if self.calibration_samples is None:
self.calibration_samples = [[] for _ in range(DRIFT_SAMPLE_COUNT)]
move_times = []
temps = [0. for _ in range(DRIFT_SAMPLE_COUNT)]
probe_samples = [[] for _ in range(DRIFT_SAMPLE_COUNT)]
toolhead = self.printer.lookup_object("toolhead")
cur_pos = toolhead.get_position()
lift_speed, probe_speed, _ = speeds
def _on_bulk_data_recd(msg):
if move_times:
idx, start_time, end_time = move_times[0]
cur_temp = self.get_temperature()
for sample in msg["data"]:
ptime = sample[0]
while ptime > end_time:
move_times.pop(0)
if not move_times:
return idx >= DRIFT_SAMPLE_COUNT - 1
idx, start_time, end_time = move_times[0]
if ptime < start_time:
continue
temps[idx] = cur_temp
probe_samples[idx].append(sample)
return True
sect_name = "probe_eddy_current " + self.name.split(maxsplit=1)[-1]
self.printer.lookup_object(sect_name).add_client(_on_bulk_data_recd)
for i in range(DRIFT_SAMPLE_COUNT):
if i == 0:
# Move down to first sample location
cur_pos[2] = tool_zero_z + .05
else:
# Sample each .5mm in z
cur_pos[2] += 1.
toolhead.manual_move(cur_pos, lift_speed)
cur_pos[2] -= .5
toolhead.manual_move(cur_pos, probe_speed)
start = toolhead.get_last_move_time() + .05
end = start + .1
move_times.append((i, start, end))
toolhead.dwell(.2)
toolhead.wait_moves()
# Wait for sample collection to finish
reactor = self.printer.get_reactor()
evttime = reactor.monotonic()
while move_times:
evttime = reactor.pause(evttime + .1)
sample_temp = sum(temps) / len(temps)
for i, data in enumerate(probe_samples):
freqs = [d[1] for d in data]
zvals = [d[2] for d in data]
avg_freq = sum(freqs) / len(freqs)
avg_z = sum(zvals) / len(zvals)
kin_z = i * .5 + .05 + kin_pos[2]
logging.info(
"Probe Values at Temp %.2fC, Z %.4fmm: Avg Freq = %.6f, "
"Avg Measured Z = %.6f"
% (sample_temp, kin_z, avg_freq, avg_z)
)
self.calibration_samples[i].append((sample_temp, avg_freq))
return sample_temp
def start_calibration(self):
self.enabled = False
self.calibration_samples = [[] for _ in range(DRIFT_SAMPLE_COUNT)]
def finish_calibration(self, success):
cal_samples = self.calibration_samples
self.calibration_samples = None
if not success:
return
gcode = self.printer.lookup_object("gcode")
if len(cal_samples) < 3:
raise gcode.error(
"calibration error, not enough samples"
)
min_temp, _ = cal_samples[0][0]
max_temp, _ = cal_samples[-1][0]
polynomials = []
for i, coords in enumerate(cal_samples):
height = .05 + i * .5
poly = Polynomial2d.fit(coords)
polynomials.append(poly)
logging.info("Polynomial at Z=%.2f: %s" % (height, repr(poly)))
end_vld_temp = max(self.max_valid_temp, max_temp)
self._check_calibration(polynomials, min_temp, end_vld_temp)
coef_cfg = "\n" + "\n".join([str(p) for p in polynomials])
configfile = self.printer.lookup_object('configfile')
configfile.set(self.name, "drift_calibration", coef_cfg)
configfile.set(self.name, "drift_calibration_min_temp", min_temp)
gcode.respond_info(
"%s: generated %d 2D polynomials\n"
"The SAVE_CONFIG command will update the printer config "
"file and restart the printer."
% (self.name, len(polynomials))
)
def _check_calibration(self, calibration, start_temp, end_temp, error=None):
error = error or self.printer.command_error
start = int(start_temp)
end = int(end_temp) + 1
for temp in range(start, end, 1):
last_freq = calibration[0](temp)
for i, poly in enumerate(calibration[1:]):
next_freq = poly(temp)
if next_freq >= last_freq:
# invalid polynomial
raise error(
"%s: invalid calibration detected, curve at index "
"%d overlaps previous curve at temp %dC."
% (self.name, i + 1, temp)
)
last_freq = next_freq
def adjust_freq(self, freq, origin_temp=None):
# Adjusts frequency from current temperature toward
# destination temperature
if not self.enabled or freq < self.min_freq:
return freq
if origin_temp is None:
origin_temp = self.get_temperature()
return self._calc_freq(freq, origin_temp, self.cal_temp)
def unadjust_freq(self, freq, dest_temp=None):
# Given a frequency and its original sampled temp, find the
# offset frequency based on the current temp
if not self.enabled or freq < self.min_freq:
return freq
if dest_temp is None:
dest_temp = self.get_temperature()
return self._calc_freq(freq, self.cal_temp, dest_temp)
def _calc_freq(self, freq, origin_temp, dest_temp):
high_freq = low_freq = None
dc = self.drift_calibration
for pos, poly in enumerate(dc):
high_freq = low_freq
low_freq = poly(origin_temp)
if freq >= low_freq:
if high_freq is None:
# Frequency above max calibration value
err = poly(dest_temp) - low_freq
return freq + err
t = min(1., max(0., (freq - low_freq) / (high_freq - low_freq)))
low_tgt_freq = poly(dest_temp)
high_tgt_freq = dc[pos-1](dest_temp)
return (1 - t) * low_tgt_freq + t * high_tgt_freq
# Frequency below minimum, no correction
return freq
def get_temperature(self):
return self.temp_sensor.get_temp()[0]
def load_config_prefix(config):
return TemperatureProbe(config)
|