aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/extras/temperature_probe.py
blob: 1d5327d7a3266452462113f61dfcb12af8b497bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# Probe temperature sensor and drift calibration
#
# Copyright (C) 2024 Eric Callahan <arksine.code@gmail.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
from . import manual_probe

KELVIN_TO_CELSIUS = -273.15

######################################################################
# Polynomial Helper Classes and Functions
######################################################################


def calc_determinant(matrix):
    m = matrix
    aei = m[0][0] * m[1][1] * m[2][2]
    bfg = m[1][0] * m[2][1] * m[0][2]
    cdh = m[2][0] * m[0][1] * m[1][2]
    ceg = m[2][0] * m[1][1] * m[0][2]
    bdi = m[1][0] * m[0][1] * m[2][2]
    afh = m[0][0] * m[2][1] * m[1][2]
    return aei + bfg + cdh - ceg - bdi - afh


class Polynomial2d:
    def __init__(self, a, b, c):
        self.a = a
        self.b = b
        self.c = c

    def __call__(self, xval):
        return self.c * xval * xval + self.b * xval + self.a

    def get_coefs(self):
        return (self.a, self.b, self.c)

    def __str__(self):
        return "%f, %f, %f" % (self.a, self.b, self.c)

    def __repr__(self):
        parts = ["y(x) ="]
        deg = 2
        for i, coef in enumerate((self.c, self.b, self.a)):
            if round(coef, 8) == int(coef):
                coef = int(coef)
            if abs(coef) < 1e-10:
                continue
            cur_deg = deg - i
            x_str = "x^%d" % (cur_deg,) if cur_deg > 1 else "x" * cur_deg
            if len(parts) == 1:
                parts.append("%f%s" % (coef, x_str))
            else:
                sym = "-" if coef < 0 else "+"
                parts.append("%s %f%s" % (sym, abs(coef), x_str))
        return " ".join(parts)

    @classmethod
    def fit(cls, coords):
        xlist = [c[0] for c in coords]
        ylist = [c[1] for c in coords]
        count = len(coords)
        sum_x = sum(xlist)
        sum_y = sum(ylist)
        sum_x2 = sum([x**2 for x in xlist])
        sum_x3 = sum([x**3 for x in xlist])
        sum_x4 = sum([x**4 for x in xlist])
        sum_xy = sum([x * y for x, y in coords])
        sum_x2y = sum([y * x**2 for x, y in coords])
        vector_b = [sum_y, sum_xy, sum_x2y]
        m = [[count, sum_x, sum_x2], [sum_x, sum_x2, sum_x3], [sum_x2, sum_x3, sum_x4]]
        m0 = [vector_b, m[1], m[2]]
        m1 = [m[0], vector_b, m[2]]
        m2 = [m[0], m[1], vector_b]
        det_m = calc_determinant(m)
        a0 = calc_determinant(m0) / det_m
        a1 = calc_determinant(m1) / det_m
        a2 = calc_determinant(m2) / det_m
        return cls(a0, a1, a2)


class TemperatureProbe:
    def __init__(self, config):
        self.name = config.get_name()
        self.printer = config.get_printer()
        self.gcode = self.printer.lookup_object("gcode")
        self.speed = config.getfloat("speed", None, above=0.0)
        self.horizontal_move_z = config.getfloat("horizontal_move_z", 2.0, above=0.0)
        self.resting_z = config.getfloat("resting_z", 0.4, above=0.0)
        self.cal_pos = config.getfloatlist("calibration_position", None, count=3)
        self.cal_bed_temp = config.getfloat("calibration_bed_temp", None, above=50.0)
        self.cal_extruder_temp = config.getfloat(
            "calibration_extruder_temp", None, above=50.0
        )
        self.cal_extruder_z = config.getfloat("extruder_heating_z", 50.0, above=0.0)
        # Setup temperature sensor
        smooth_time = config.getfloat("smooth_time", 2.0, above=0.0)
        self.inv_smooth_time = 1.0 / smooth_time
        self.min_temp = config.getfloat(
            "min_temp", KELVIN_TO_CELSIUS, minval=KELVIN_TO_CELSIUS
        )
        self.max_temp = config.getfloat("max_temp", 99999999.9, above=self.min_temp)
        pheaters = self.printer.load_object(config, "heaters")
        self.sensor = pheaters.setup_sensor(config)
        self.sensor.setup_minmax(self.min_temp, self.max_temp)
        self.sensor.setup_callback(self._temp_callback)
        pheaters.register_sensor(config, self)
        self.last_temp_read_time = 0.0
        self.last_measurement = (
            0.0,
            99999999.0,
            0.0,
        )
        # Calibration State
        self.cal_helper = None
        self.next_auto_temp = 99999999.0
        self.target_temp = 0
        self.expected_count = 0
        self.sample_count = 0
        self.in_calibration = False
        self.step = 2.0
        self.last_zero_pos = None
        self.total_expansion = 0
        self.start_pos = []

        # Register GCode Commands
        pname = self.name.split(maxsplit=1)[-1]
        self.gcode.register_mux_command(
            "TEMPERATURE_PROBE_CALIBRATE",
            "PROBE",
            pname,
            self.cmd_TEMPERATURE_PROBE_CALIBRATE,
            desc=self.cmd_TEMPERATURE_PROBE_CALIBRATE_help,
        )

        self.gcode.register_mux_command(
            "TEMPERATURE_PROBE_ENABLE",
            "PROBE",
            pname,
            self.cmd_TEMPERATURE_PROBE_ENABLE,
            desc=self.cmd_TEMPERATURE_PROBE_ENABLE_help,
        )

        # Register Drift Compensation Helper with probe
        full_probe_name = "probe_eddy_current %s" % (pname,)
        if config.has_section(full_probe_name):
            pprobe = self.printer.load_object(config, full_probe_name)
            self.cal_helper = EddyDriftCompensation(config, self)
            pprobe.register_drift_compensation(self.cal_helper)
            logging.info(
                "%s: registered drift compensation with probe [%s]"
                % (self.name, full_probe_name)
            )
        else:
            logging.info(
                "%s: No probe named %s configured, thermal drift compensation "
                "disabled." % (self.name, pname)
            )

    def _temp_callback(self, read_time, temp):
        smoothed_temp, measured_min, measured_max = self.last_measurement
        time_diff = read_time - self.last_temp_read_time
        self.last_temp_read_time = read_time
        temp_diff = temp - smoothed_temp
        adj_time = min(time_diff * self.inv_smooth_time, 1.0)
        smoothed_temp += temp_diff * adj_time
        measured_min = min(measured_min, smoothed_temp)
        measured_max = max(measured_max, smoothed_temp)
        self.last_measurement = (smoothed_temp, measured_min, measured_max)
        if self.in_calibration and smoothed_temp >= self.next_auto_temp:
            self.printer.get_reactor().register_async_callback(self._check_kick_next)

    def _check_kick_next(self, eventtime):
        smoothed_temp = self.last_measurement[0]
        if self.in_calibration and smoothed_temp >= self.next_auto_temp:
            self.next_auto_temp = 99999999.0
            self.gcode.run_script("TEMPERATURE_PROBE_NEXT")

    def get_temp(self, eventtime=None):
        return self.last_measurement[0], self.target_temp

    def _collect_sample(self, kin_pos, tool_zero_z):
        probe = self._get_probe()
        x_offset, y_offset, _ = probe.get_offsets()
        speeds = self._get_speeds()
        lift_speed, _, move_speed = speeds
        toolhead = self.printer.lookup_object("toolhead")
        cur_pos = toolhead.get_position()
        # Move to probe to sample collection position
        cur_pos[2] += self.horizontal_move_z
        toolhead.manual_move(cur_pos, lift_speed)
        cur_pos[0] -= x_offset
        cur_pos[1] -= y_offset
        toolhead.manual_move(cur_pos, move_speed)
        return self.cal_helper.collect_sample(kin_pos, tool_zero_z, speeds)

    def _prepare_next_sample(self, last_temp, tool_zero_z):
        # Register our own abort command now that the manual
        # probe has finished and unregistered
        self.gcode.register_command(
            "ABORT",
            self.cmd_TEMPERATURE_PROBE_ABORT,
            desc=self.cmd_TEMPERATURE_PROBE_ABORT_help,
        )
        probe_speed = self._get_speeds()[1]
        # Move tool down to the resting position
        toolhead = self.printer.lookup_object("toolhead")
        cur_pos = toolhead.get_position()
        cur_pos[2] = tool_zero_z + self.resting_z
        toolhead.manual_move(cur_pos, probe_speed)
        cnt, exp_cnt = self.sample_count, self.expected_count
        self.next_auto_temp = last_temp + self.step
        self.gcode.respond_info(
            "%s: collected sample %d/%d at temp %.2fC, next sample scheduled "
            "at temp %.2fC" % (self.name, cnt, exp_cnt, last_temp, self.next_auto_temp)
        )

    def _manual_probe_finalize(self, kin_pos):
        if kin_pos is None:
            # Calibration aborted
            self._finalize_drift_cal(False)
            return
        if self.last_zero_pos is not None:
            z_diff = self.last_zero_pos[2] - kin_pos[2]
            self.total_expansion += z_diff
            logging.info(
                "Estimated Total Thermal Expansion: %.6f" % (self.total_expansion,)
            )
        self.last_zero_pos = kin_pos
        toolhead = self.printer.lookup_object("toolhead")
        tool_zero_z = toolhead.get_position()[2]
        try:
            last_temp = self._collect_sample(kin_pos, tool_zero_z)
        except Exception:
            self._finalize_drift_cal(False)
            raise
        self.sample_count += 1
        if last_temp >= self.target_temp:
            # Calibration Done
            self._finalize_drift_cal(True)
        else:
            try:
                self._prepare_next_sample(last_temp, tool_zero_z)
                if self.sample_count == 1:
                    self._set_bed_temp(self.cal_bed_temp)
            except Exception:
                self._finalize_drift_cal(False)
                raise

    def _finalize_drift_cal(self, success, msg=None):
        self.next_auto_temp = 99999999.0
        self.target_temp = 0
        self.expected_count = 0
        self.sample_count = 0
        self.step = 2.0
        self.in_calibration = False
        self.last_zero_pos = None
        self.total_expansion = 0
        self.start_pos = []
        # Unregister Temporary Commands
        self.gcode.register_command("ABORT", None)
        self.gcode.register_command("TEMPERATURE_PROBE_NEXT", None)
        self.gcode.register_command("TEMPERATURE_PROBE_COMPLETE", None)
        # Turn off heaters
        self._set_extruder_temp(0)
        self._set_bed_temp(0)
        try:
            self.cal_helper.finish_calibration(success)
        except self.gcode.error as e:
            success = False
            msg = str(e)
        if not success:
            msg = msg or "%s: calibration aborted" % (self.name,)
            self.gcode.respond_info(msg)

    def _get_probe(self):
        probe = self.printer.lookup_object("probe")
        if probe is None:
            raise self.gcode.error("No probe configured")
        return probe

    def _set_extruder_temp(self, temp, wait=False):
        if self.cal_extruder_temp is None:
            # Extruder temperature not configured
            return
        toolhead = self.printer.lookup_object("toolhead")
        extr_name = toolhead.get_extruder().get_name()
        self.gcode.run_script_from_command(
            "SET_HEATER_TEMPERATURE HEATER=%s TARGET=%f" % (extr_name, temp)
        )
        if wait:
            self.gcode.run_script_from_command(
                "TEMPERATURE_WAIT SENSOR=%s MINIMUM=%f" % (extr_name, temp)
            )

    def _set_bed_temp(self, temp):
        if self.cal_bed_temp is None:
            # Bed temperature not configured
            return
        self.gcode.run_script_from_command(
            "SET_HEATER_TEMPERATURE HEATER=heater_bed TARGET=%f" % (temp,)
        )

    def _check_homed(self):
        toolhead = self.printer.lookup_object("toolhead")
        reactor = self.printer.get_reactor()
        status = toolhead.get_status(reactor.monotonic())
        h_axes = status["homed_axes"]
        for axis in "xyz":
            if axis not in h_axes:
                raise self.gcode.error("Printer must be homed before calibration")

    def _move_to_start(self):
        toolhead = self.printer.lookup_object("toolhead")
        cur_pos = toolhead.get_position()
        move_speed = self._get_speeds()[2]
        if self.cal_pos is not None:
            if self.cal_extruder_temp is not None:
                # Move to extruder heating z position
                cur_pos[2] = self.cal_extruder_z
                toolhead.manual_move(cur_pos, move_speed)
            toolhead.manual_move(self.cal_pos[:2], move_speed)
            self._set_extruder_temp(self.cal_extruder_temp, True)
            toolhead.manual_move(self.cal_pos, move_speed)
        elif self.cal_extruder_temp is not None:
            cur_pos[2] = self.cal_extruder_z
            toolhead.manual_move(cur_pos, move_speed)
            self._set_extruder_temp(self.cal_extruder_temp, True)

    def _get_speeds(self):
        pparams = self._get_probe().get_probe_params()
        probe_speed = pparams["probe_speed"]
        lift_speed = pparams["lift_speed"]
        move_speed = self.speed or max(probe_speed, lift_speed)
        return lift_speed, probe_speed, move_speed

    cmd_TEMPERATURE_PROBE_CALIBRATE_help = (
        "Calibrate probe temperature drift compensation"
    )

    def cmd_TEMPERATURE_PROBE_CALIBRATE(self, gcmd):
        if self.cal_helper is None:
            raise gcmd.error("No calibration helper registered for [%s]" % (self.name,))
        self._check_homed()
        probe = self._get_probe()
        probe_name = probe.get_status(None)["name"]
        short_name = probe_name.split(maxsplit=1)[-1]
        if short_name != self.name.split(maxsplit=1)[-1]:
            raise self.gcode.error(
                "[%s] not linked to registered probe [%s]." % (self.name, probe_name)
            )
        manual_probe.verify_no_manual_probe(self.printer)
        if self.in_calibration:
            raise gcmd.error(
                "Already in probe drift calibration. Use "
                "TEMPERATURE_PROBE_COMPLETE or ABORT to exit."
            )
        cur_temp = self.last_measurement[0]
        target_temp = gcmd.get_float("TARGET", above=cur_temp)
        step = gcmd.get_float("STEP", 2.0, minval=1.0)
        expected_count = int((target_temp - cur_temp) / step + 0.5)
        if expected_count < 3:
            raise gcmd.error(
                "Invalid STEP and/or TARGET parameters resulted "
                "in too few expected samples: %d" % (expected_count,)
            )
        try:
            self.gcode.register_command(
                "TEMPERATURE_PROBE_NEXT",
                self.cmd_TEMPERATURE_PROBE_NEXT,
                desc=self.cmd_TEMPERATURE_PROBE_NEXT_help,
            )
            self.gcode.register_command(
                "TEMPERATURE_PROBE_COMPLETE",
                self.cmd_TEMPERATURE_PROBE_COMPLETE,
                desc=self.cmd_TEMPERATURE_PROBE_NEXT_help,
            )
        except self.printer.config_error:
            raise gcmd.error(
                "Auxiliary Probe Drift Commands already registered. Use "
                "TEMPERATURE_PROBE_COMPLETE or ABORT to exit."
            )
        self.in_calibration = True
        self.cal_helper.start_calibration()
        self.target_temp = target_temp
        self.step = step
        self.sample_count = 0
        self.expected_count = expected_count
        # If configured move to heating position and turn on extruder
        try:
            self._move_to_start()
        except self.printer.command_error:
            self._finalize_drift_cal(False, "Error during initial move")
            raise
        # Capture start position and begin initial probe
        toolhead = self.printer.lookup_object("toolhead")
        self.start_pos = toolhead.get_position()[:2]
        manual_probe.ManualProbeHelper(self.printer, gcmd, self._manual_probe_finalize)

    cmd_TEMPERATURE_PROBE_NEXT_help = "Sample next probe drift temperature"

    def cmd_TEMPERATURE_PROBE_NEXT(self, gcmd):
        manual_probe.verify_no_manual_probe(self.printer)
        self.next_auto_temp = 99999999.0
        toolhead = self.printer.lookup_object("toolhead")
        # Lift and Move to nozzle back to start position
        curpos = toolhead.get_position()
        start_z = curpos[2]
        lift_speed, probe_speed, move_speed = self._get_speeds()
        # Move nozzle to the manual probing position
        curpos[2] += self.horizontal_move_z
        toolhead.manual_move(curpos, lift_speed)
        curpos[0] = self.start_pos[0]
        curpos[1] = self.start_pos[1]
        toolhead.manual_move(curpos, move_speed)
        curpos[2] = start_z
        toolhead.manual_move(curpos, probe_speed)
        self.gcode.register_command("ABORT", None)
        manual_probe.ManualProbeHelper(self.printer, gcmd, self._manual_probe_finalize)

    cmd_TEMPERATURE_PROBE_COMPLETE_help = "Finish Probe Drift Calibration"

    def cmd_TEMPERATURE_PROBE_COMPLETE(self, gcmd):
        manual_probe.verify_no_manual_probe(self.printer)
        self._finalize_drift_cal(self.sample_count >= 3)

    cmd_TEMPERATURE_PROBE_ABORT_help = "Abort Probe Drift Calibration"

    def cmd_TEMPERATURE_PROBE_ABORT(self, gcmd):
        self._finalize_drift_cal(False)

    cmd_TEMPERATURE_PROBE_ENABLE_help = (
        "Set adjustment factor applied to drift correction"
    )

    def cmd_TEMPERATURE_PROBE_ENABLE(self, gcmd):
        if self.cal_helper is not None:
            self.cal_helper.set_enabled(gcmd)

    def is_in_calibration(self):
        return self.in_calibration

    def get_status(self, eventtime=None):
        smoothed_temp, measured_min, measured_max = self.last_measurement
        dcomp_enabled = False
        if self.cal_helper is not None:
            dcomp_enabled = self.cal_helper.is_enabled()
        return {
            "temperature": smoothed_temp,
            "measured_min_temp": round(measured_min, 2),
            "measured_max_temp": round(measured_max, 2),
            "in_calibration": self.in_calibration,
            "estimated_expansion": self.total_expansion,
            "compensation_enabled": dcomp_enabled,
        }

    def stats(self, eventtime):
        return False, "%s: temp=%.1f" % (self.name, self.last_measurement[0])


#####################################################################
#
#  Eddy Current Probe Drift Compensation Helper
#
#####################################################################

DRIFT_SAMPLE_COUNT = 9


class EddyDriftCompensation:
    def __init__(self, config, sensor):
        self.printer = config.get_printer()
        self.temp_sensor = sensor
        self.name = config.get_name()
        self.cal_temp = config.getfloat("calibration_temp", 0.0)
        self.drift_calibration = None
        self.calibration_samples = None
        self.max_valid_temp = config.getfloat("max_validation_temp", 60.0)
        self.dc_min_temp = config.getfloat("drift_calibration_min_temp", 0.0)
        dc = config.getlists("drift_calibration", None, seps=(",", "\n"), parser=float)
        self.min_freq = 999999999999.0
        if dc is not None:
            for coefs in dc:
                if len(coefs) != 3:
                    raise config.error("Invalid polynomial in drift calibration")
            self.drift_calibration = [Polynomial2d(*coefs) for coefs in dc]
            cal = self.drift_calibration
            start_temp, end_temp = self.dc_min_temp, self.max_valid_temp
            self._check_calibration(cal, start_temp, end_temp, config.error)
            low_poly = self.drift_calibration[-1]
            self.min_freq = min([low_poly(temp) for temp in range(121)])
            cal_str = "\n".join([repr(p) for p in cal])
            logging.info(
                "%s: loaded temperature drift calibration. Min Temp: %.2f,"
                " Min Freq: %.6f\n%s"
                % (self.name, self.dc_min_temp, self.min_freq, cal_str)
            )
        else:
            logging.info(
                "%s: No drift calibration configured, disabling temperature "
                "drift compensation" % (self.name,)
            )
        self.enabled = has_dc = self.drift_calibration is not None
        if self.cal_temp < 1e-6 and has_dc:
            self.enabled = False
            logging.info(
                "%s: No temperature saved for eddy probe calibration, "
                "disabling temperature drift compensation." % (self.name,)
            )

    def is_enabled(self):
        return self.enabled

    def set_enabled(self, gcmd):
        enabled = gcmd.get_int("ENABLE")
        if enabled:
            if self.drift_calibration is None:
                raise gcmd.error(
                    "No drift calibration configured, cannot enable "
                    "temperature drift compensation"
                )
            if self.cal_temp < 1e-6:
                raise gcmd.error(
                    "Z Calibration temperature not configured, cannot enable "
                    "temperature drift compensation"
                )
        self.enabled = enabled

    def note_z_calibration_start(self):
        self.cal_temp = self.get_temperature()

    def note_z_calibration_finish(self):
        self.cal_temp = (self.cal_temp + self.get_temperature()) / 2.0
        configfile = self.printer.lookup_object("configfile")
        configfile.set(self.name, "calibration_temp", "%.6f " % (self.cal_temp))
        gcode = self.printer.lookup_object("gcode")
        gcode.respond_info(
            "%s: Z Calibration Temperature set to %.2f. "
            "The SAVE_CONFIG command will update the printer config "
            "file and restart the printer." % (self.name, self.cal_temp)
        )

    def collect_sample(self, kin_pos, tool_zero_z, speeds):
        if self.calibration_samples is None:
            self.calibration_samples = [[] for _ in range(DRIFT_SAMPLE_COUNT)]
        move_times = []
        temps = [0.0 for _ in range(DRIFT_SAMPLE_COUNT)]
        probe_samples = [[] for _ in range(DRIFT_SAMPLE_COUNT)]
        toolhead = self.printer.lookup_object("toolhead")
        cur_pos = toolhead.get_position()
        lift_speed, probe_speed, _ = speeds

        def _on_bulk_data_recd(msg):
            if move_times:
                idx, start_time, end_time = move_times[0]
                cur_temp = self.get_temperature()
                for sample in msg["data"]:
                    ptime = sample[0]
                    while ptime > end_time:
                        move_times.pop(0)
                        if not move_times:
                            return idx >= DRIFT_SAMPLE_COUNT - 1
                        idx, start_time, end_time = move_times[0]
                    if ptime < start_time:
                        continue
                    temps[idx] = cur_temp
                    probe_samples[idx].append(sample)
            return True

        sect_name = "probe_eddy_current " + self.name.split(maxsplit=1)[-1]
        self.printer.lookup_object(sect_name).add_client(_on_bulk_data_recd)
        for i in range(DRIFT_SAMPLE_COUNT):
            if i == 0:
                # Move down to first sample location
                cur_pos[2] = tool_zero_z + 0.05
            else:
                # Sample each .5mm in z
                cur_pos[2] += 1.0
                toolhead.manual_move(cur_pos, lift_speed)
                cur_pos[2] -= 0.5
            toolhead.manual_move(cur_pos, probe_speed)
            start = toolhead.get_last_move_time() + 0.05
            end = start + 0.1
            move_times.append((i, start, end))
            toolhead.dwell(0.2)
        toolhead.wait_moves()
        # Wait for sample collection to finish
        reactor = self.printer.get_reactor()
        evttime = reactor.monotonic()
        while move_times:
            evttime = reactor.pause(evttime + 0.1)
        sample_temp = sum(temps) / len(temps)
        for i, data in enumerate(probe_samples):
            freqs = [d[1] for d in data]
            zvals = [d[2] for d in data]
            avg_freq = sum(freqs) / len(freqs)
            avg_z = sum(zvals) / len(zvals)
            kin_z = i * 0.5 + 0.05 + kin_pos[2]
            logging.info(
                "Probe Values at Temp %.2fC, Z %.4fmm: Avg Freq = %.6f, "
                "Avg Measured Z = %.6f" % (sample_temp, kin_z, avg_freq, avg_z)
            )
            self.calibration_samples[i].append((sample_temp, avg_freq))
        return sample_temp

    def start_calibration(self):
        self.enabled = False
        self.calibration_samples = [[] for _ in range(DRIFT_SAMPLE_COUNT)]

    def finish_calibration(self, success):
        cal_samples = self.calibration_samples
        self.calibration_samples = None
        if not success:
            return
        gcode = self.printer.lookup_object("gcode")
        if len(cal_samples) < 3:
            raise gcode.error("calibration error, not enough samples")
        min_temp, _ = cal_samples[0][0]
        max_temp, _ = cal_samples[-1][0]
        polynomials = []
        for i, coords in enumerate(cal_samples):
            height = 0.05 + i * 0.5
            poly = Polynomial2d.fit(coords)
            polynomials.append(poly)
            logging.info("Polynomial at Z=%.2f: %s" % (height, repr(poly)))
        end_vld_temp = max(self.max_valid_temp, max_temp)
        self._check_calibration(polynomials, min_temp, end_vld_temp)
        coef_cfg = "\n" + "\n".join([str(p) for p in polynomials])
        configfile = self.printer.lookup_object("configfile")
        configfile.set(self.name, "drift_calibration", coef_cfg)
        configfile.set(self.name, "drift_calibration_min_temp", min_temp)
        gcode.respond_info(
            "%s: generated %d 2D polynomials\n"
            "The SAVE_CONFIG command will update the printer config "
            "file and restart the printer." % (self.name, len(polynomials))
        )

    def _check_calibration(self, calibration, start_temp, end_temp, error=None):
        error = error or self.printer.command_error
        start = int(start_temp)
        end = int(end_temp) + 1
        for temp in range(start, end, 1):
            last_freq = calibration[0](temp)
            for i, poly in enumerate(calibration[1:]):
                next_freq = poly(temp)
                if next_freq >= last_freq:
                    # invalid polynomial
                    raise error(
                        "%s: invalid calibration detected, curve at index "
                        "%d overlaps previous curve at temp %dC."
                        % (self.name, i + 1, temp)
                    )
                last_freq = next_freq

    def adjust_freq(self, freq, origin_temp=None):
        # Adjusts frequency from current temperature toward
        # destination temperature
        if not self.enabled or freq < self.min_freq:
            return freq
        if origin_temp is None:
            origin_temp = self.get_temperature()
        return self._calc_freq(freq, origin_temp, self.cal_temp)

    def unadjust_freq(self, freq, dest_temp=None):
        # Given a frequency and its original sampled temp, find the
        # offset frequency based on the current temp
        if not self.enabled or freq < self.min_freq:
            return freq
        if dest_temp is None:
            dest_temp = self.get_temperature()
        return self._calc_freq(freq, self.cal_temp, dest_temp)

    def _calc_freq(self, freq, origin_temp, dest_temp):
        high_freq = low_freq = None
        dc = self.drift_calibration
        for pos, poly in enumerate(dc):
            high_freq = low_freq
            low_freq = poly(origin_temp)
            if freq >= low_freq:
                if high_freq is None:
                    # Frequency above max calibration value
                    err = poly(dest_temp) - low_freq
                    return freq + err
                t = min(1.0, max(0.0, (freq - low_freq) / (high_freq - low_freq)))
                low_tgt_freq = poly(dest_temp)
                high_tgt_freq = dc[pos - 1](dest_temp)
                return (1 - t) * low_tgt_freq + t * high_tgt_freq
        # Frequency below minimum, no correction
        return freq

    def get_temperature(self):
        return self.temp_sensor.get_temp()[0]


def load_config_prefix(config):
    return TemperatureProbe(config)