1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
# Support for eddy current based Z probes
#
# Copyright (C) 2021-2024 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math, bisect
import mcu
from . import ldc1612, probe, manual_probe
OUT_OF_RANGE = 99.9
# Tool for calibrating the sensor Z detection and applying that calibration
class EddyCalibration:
def __init__(self, config):
self.printer = config.get_printer()
self.name = config.get_name()
self.drift_comp = DummyDriftCompensation()
# Current calibration data
self.cal_freqs = []
self.cal_zpos = []
cal = config.get('calibrate', None)
if cal is not None:
cal = [list(map(float, d.strip().split(':', 1)))
for d in cal.split(',')]
self.load_calibration(cal)
# Probe calibrate state
self.probe_speed = 0.
# Register commands
cname = self.name.split()[-1]
gcode = self.printer.lookup_object('gcode')
gcode.register_mux_command("PROBE_EDDY_CURRENT_CALIBRATE", "CHIP",
cname, self.cmd_EDDY_CALIBRATE,
desc=self.cmd_EDDY_CALIBRATE_help)
def is_calibrated(self):
return len(self.cal_freqs) > 2
def load_calibration(self, cal):
cal = sorted([(c[1], c[0]) for c in cal])
self.cal_freqs = [c[0] for c in cal]
self.cal_zpos = [c[1] for c in cal]
def apply_calibration(self, samples):
cur_temp = self.drift_comp.get_temperature()
for i, (samp_time, freq, dummy_z) in enumerate(samples):
adj_freq = self.drift_comp.adjust_freq(freq, cur_temp)
pos = bisect.bisect(self.cal_freqs, adj_freq)
if pos >= len(self.cal_zpos):
zpos = -OUT_OF_RANGE
elif pos == 0:
zpos = OUT_OF_RANGE
else:
# XXX - could further optimize and avoid div by zero
this_freq = self.cal_freqs[pos]
prev_freq = self.cal_freqs[pos - 1]
this_zpos = self.cal_zpos[pos]
prev_zpos = self.cal_zpos[pos - 1]
gain = (this_zpos - prev_zpos) / (this_freq - prev_freq)
offset = prev_zpos - prev_freq * gain
zpos = adj_freq * gain + offset
samples[i] = (samp_time, freq, round(zpos, 6))
def freq_to_height(self, freq):
dummy_sample = [(0., freq, 0.)]
self.apply_calibration(dummy_sample)
return dummy_sample[0][2]
def height_to_freq(self, height):
# XXX - could optimize lookup
rev_zpos = list(reversed(self.cal_zpos))
rev_freqs = list(reversed(self.cal_freqs))
pos = bisect.bisect(rev_zpos, height)
if pos == 0 or pos >= len(rev_zpos):
raise self.printer.command_error(
"Invalid probe_eddy_current height")
this_freq = rev_freqs[pos]
prev_freq = rev_freqs[pos - 1]
this_zpos = rev_zpos[pos]
prev_zpos = rev_zpos[pos - 1]
gain = (this_freq - prev_freq) / (this_zpos - prev_zpos)
offset = prev_freq - prev_zpos * gain
freq = height * gain + offset
return self.drift_comp.unadjust_freq(freq)
def do_calibration_moves(self, move_speed):
toolhead = self.printer.lookup_object('toolhead')
kin = toolhead.get_kinematics()
move = toolhead.manual_move
# Start data collection
msgs = []
is_finished = False
def handle_batch(msg):
if is_finished:
return False
msgs.append(msg)
return True
self.printer.lookup_object(self.name).add_client(handle_batch)
toolhead.dwell(1.)
self.drift_comp.note_z_calibration_start()
# Move to each 40um position
max_z = 4.0
samp_dist = 0.040
req_zpos = [i*samp_dist for i in range(int(max_z / samp_dist) + 1)]
start_pos = toolhead.get_position()
times = []
for zpos in req_zpos:
# Move to next position (always descending to reduce backlash)
hop_pos = list(start_pos)
hop_pos[2] += zpos + 0.500
move(hop_pos, move_speed)
next_pos = list(start_pos)
next_pos[2] += zpos
move(next_pos, move_speed)
# Note sample timing
start_query_time = toolhead.get_last_move_time() + 0.050
end_query_time = start_query_time + 0.100
toolhead.dwell(0.200)
# Find Z position based on actual commanded stepper position
toolhead.flush_step_generation()
kin_spos = {s.get_name(): s.get_commanded_position()
for s in kin.get_steppers()}
kin_pos = kin.calc_position(kin_spos)
times.append((start_query_time, end_query_time, kin_pos[2]))
toolhead.dwell(1.0)
toolhead.wait_moves()
self.drift_comp.note_z_calibration_finish()
# Finish data collection
is_finished = True
# Correlate query responses
cal = {}
step = 0
for msg in msgs:
for query_time, freq, old_z in msg['data']:
# Add to step tracking
while step < len(times) and query_time > times[step][1]:
step += 1
if step < len(times) and query_time >= times[step][0]:
cal.setdefault(times[step][2], []).append(freq)
if len(cal) != len(times):
raise self.printer.command_error(
"Failed calibration - incomplete sensor data")
return cal
def calc_freqs(self, meas):
total_count = total_variance = 0
positions = {}
for pos, freqs in meas.items():
count = len(freqs)
freq_avg = float(sum(freqs)) / count
positions[pos] = freq_avg
total_count += count
total_variance += sum([(f - freq_avg)**2 for f in freqs])
return positions, math.sqrt(total_variance / total_count), total_count
def post_manual_probe(self, kin_pos):
if kin_pos is None:
# Manual Probe was aborted
return
curpos = list(kin_pos)
move = self.printer.lookup_object('toolhead').manual_move
# Move away from the bed
probe_calibrate_z = curpos[2]
curpos[2] += 5.
move(curpos, self.probe_speed)
# Move sensor over nozzle position
pprobe = self.printer.lookup_object("probe")
x_offset, y_offset, z_offset = pprobe.get_offsets()
curpos[0] -= x_offset
curpos[1] -= y_offset
move(curpos, self.probe_speed)
# Descend back to bed
curpos[2] -= 5. - 0.050
move(curpos, self.probe_speed)
# Perform calibration movement and capture
cal = self.do_calibration_moves(self.probe_speed)
# Calculate each sample position average and variance
positions, std, total = self.calc_freqs(cal)
last_freq = 0.
for pos, freq in reversed(sorted(positions.items())):
if freq <= last_freq:
raise self.printer.command_error(
"Failed calibration - frequency not increasing each step")
last_freq = freq
gcode = self.printer.lookup_object("gcode")
gcode.respond_info(
"probe_eddy_current: stddev=%.3f in %d queries\n"
"The SAVE_CONFIG command will update the printer config file\n"
"and restart the printer." % (std, total))
# Save results
cal_contents = []
for i, (pos, freq) in enumerate(sorted(positions.items())):
if not i % 3:
cal_contents.append('\n')
cal_contents.append("%.6f:%.3f" % (pos - probe_calibrate_z, freq))
cal_contents.append(',')
cal_contents.pop()
configfile = self.printer.lookup_object('configfile')
configfile.set(self.name, 'calibrate', ''.join(cal_contents))
cmd_EDDY_CALIBRATE_help = "Calibrate eddy current probe"
def cmd_EDDY_CALIBRATE(self, gcmd):
self.probe_speed = gcmd.get_float("PROBE_SPEED", 5., above=0.)
# Start manual probe
manual_probe.ManualProbeHelper(self.printer, gcmd,
self.post_manual_probe)
def register_drift_compensation(self, comp):
self.drift_comp = comp
# Tool to gather samples and convert them to probe positions
class EddyGatherSamples:
def __init__(self, printer, sensor_helper, calibration, z_offset):
self._printer = printer
self._sensor_helper = sensor_helper
self._calibration = calibration
self._z_offset = z_offset
# Results storage
self._samples = []
self._probe_times = []
self._probe_results = []
self._need_stop = False
# Start samples
if not self._calibration.is_calibrated():
raise self._printer.command_error(
"Must calibrate probe_eddy_current first")
sensor_helper.add_client(self._add_measurement)
def _add_measurement(self, msg):
if self._need_stop:
del self._samples[:]
return False
self._samples.append(msg)
self._check_samples()
return True
def finish(self):
self._need_stop = True
def _await_samples(self):
# Make sure enough samples have been collected
reactor = self._printer.get_reactor()
mcu = self._sensor_helper.get_mcu()
while self._probe_times:
start_time, end_time, pos_time, toolhead_pos = self._probe_times[0]
systime = reactor.monotonic()
est_print_time = mcu.estimated_print_time(systime)
if est_print_time > end_time + 1.0:
raise self._printer.command_error(
"probe_eddy_current sensor outage")
reactor.pause(systime + 0.010)
def _pull_freq(self, start_time, end_time):
# Find average sensor frequency between time range
msg_num = discard_msgs = 0
samp_sum = 0.
samp_count = 0
while msg_num < len(self._samples):
msg = self._samples[msg_num]
msg_num += 1
data = msg['data']
if data[0][0] > end_time:
break
if data[-1][0] < start_time:
discard_msgs = msg_num
continue
for time, freq, z in data:
if time >= start_time and time <= end_time:
samp_sum += freq
samp_count += 1
del self._samples[:discard_msgs]
if not samp_count:
# No sensor readings - raise error in pull_probed()
return 0.
return samp_sum / samp_count
def _lookup_toolhead_pos(self, pos_time):
toolhead = self._printer.lookup_object('toolhead')
kin = toolhead.get_kinematics()
kin_spos = {s.get_name(): s.mcu_to_commanded_position(
s.get_past_mcu_position(pos_time))
for s in kin.get_steppers()}
return kin.calc_position(kin_spos)
def _check_samples(self):
while self._samples and self._probe_times:
start_time, end_time, pos_time, toolhead_pos = self._probe_times[0]
if self._samples[-1]['data'][-1][0] < end_time:
break
freq = self._pull_freq(start_time, end_time)
if pos_time is not None:
toolhead_pos = self._lookup_toolhead_pos(pos_time)
sensor_z = None
if freq:
sensor_z = self._calibration.freq_to_height(freq)
self._probe_results.append((sensor_z, toolhead_pos))
self._probe_times.pop(0)
def pull_probed(self):
self._await_samples()
results = []
for sensor_z, toolhead_pos in self._probe_results:
if sensor_z is None:
raise self._printer.command_error(
"Unable to obtain probe_eddy_current sensor readings")
if sensor_z <= -OUT_OF_RANGE or sensor_z >= OUT_OF_RANGE:
raise self._printer.command_error(
"probe_eddy_current sensor not in valid range")
# Callers expect position relative to z_offset, so recalculate
bed_deviation = toolhead_pos[2] - sensor_z
toolhead_pos[2] = self._z_offset + bed_deviation
results.append(toolhead_pos)
del self._probe_results[:]
return results
def note_probe(self, start_time, end_time, toolhead_pos):
self._probe_times.append((start_time, end_time, None, toolhead_pos))
self._check_samples()
def note_probe_and_position(self, start_time, end_time, pos_time):
self._probe_times.append((start_time, end_time, pos_time, None))
self._check_samples()
# Helper for implementing PROBE style commands (descend until trigger)
class EddyDescend:
REASON_SENSOR_ERROR = mcu.MCU_trsync.REASON_COMMS_TIMEOUT + 1
def __init__(self, config, sensor_helper, calibration, param_helper):
self._printer = config.get_printer()
self._sensor_helper = sensor_helper
self._mcu = sensor_helper.get_mcu()
self._calibration = calibration
self._param_helper = param_helper
self._z_min_position = probe.lookup_minimum_z(config)
self._z_offset = config.getfloat('z_offset', minval=0.)
self._dispatch = mcu.TriggerDispatch(self._mcu)
self._trigger_time = 0.
self._gather = None
probe.LookupZSteppers(config, self._dispatch.add_stepper)
# Interface for phoming.probing_move()
def get_steppers(self):
return self._dispatch.get_steppers()
def home_start(self, print_time, sample_time, sample_count, rest_time,
triggered=True):
self._trigger_time = 0.
trigger_freq = self._calibration.height_to_freq(self._z_offset)
trigger_completion = self._dispatch.start(print_time)
self._sensor_helper.setup_home(
print_time, trigger_freq, self._dispatch.get_oid(),
mcu.MCU_trsync.REASON_ENDSTOP_HIT, self.REASON_SENSOR_ERROR)
return trigger_completion
def home_wait(self, home_end_time):
self._dispatch.wait_end(home_end_time)
trigger_time = self._sensor_helper.clear_home()
res = self._dispatch.stop()
if res >= mcu.MCU_trsync.REASON_COMMS_TIMEOUT:
if res == mcu.MCU_trsync.REASON_COMMS_TIMEOUT:
raise self._printer.command_error(
"Communication timeout during homing")
raise self._printer.command_error("Eddy current sensor error")
if res != mcu.MCU_trsync.REASON_ENDSTOP_HIT:
return 0.
if self._mcu.is_fileoutput():
return home_end_time
self._trigger_time = trigger_time
return trigger_time
# Probe session interface
def start_probe_session(self, gcmd):
self._gather = EddyGatherSamples(self._printer, self._sensor_helper,
self._calibration, self._z_offset)
return self
def run_probe(self, gcmd):
toolhead = self._printer.lookup_object('toolhead')
pos = toolhead.get_position()
pos[2] = self._z_min_position
speed = self._param_helper.get_probe_params(gcmd)['probe_speed']
# Perform probing move
phoming = self._printer.lookup_object('homing')
trig_pos = phoming.probing_move(self, pos, speed)
if not self._trigger_time:
return trig_pos
# Extract samples
start_time = self._trigger_time + 0.050
end_time = start_time + 0.100
toolhead_pos = toolhead.get_position()
self._gather.note_probe(start_time, end_time, toolhead_pos)
def pull_probed_results(self):
return self._gather.pull_probed()
def end_probe_session(self):
self._gather.finish()
self._gather = None
# Wrapper to emulate mcu_endstop for probe:z_virtual_endstop
# Note that this does not provide accurate results
class EddyEndstopWrapper:
def __init__(self, sensor_helper, eddy_descend):
self._sensor_helper = sensor_helper
self._eddy_descend = eddy_descend
self._hw_probe_session = None
# Interface for MCU_endstop
def get_mcu(self):
return self._sensor_helper.get_mcu()
def add_stepper(self, stepper):
pass
def get_steppers(self):
return self._eddy_descend.get_steppers()
def home_start(self, print_time, sample_time, sample_count, rest_time,
triggered=True):
return self._eddy_descend.home_start(
print_time, sample_time, sample_count, rest_time, triggered)
def home_wait(self, home_end_time):
return self._eddy_descend.home_wait(home_end_time)
def query_endstop(self, print_time):
return False # XXX
# Interface for HomingViaProbeHelper
def multi_probe_begin(self):
self._hw_probe_session = self._eddy_descend.start_probe_session(None)
def multi_probe_end(self):
self._hw_probe_session.end_probe_session()
self._hw_probe_session = None
def probe_prepare(self, hmove):
pass
def probe_finish(self, hmove):
pass
def get_position_endstop(self):
return self._eddy_descend._z_offset
# Implementing probing with "METHOD=scan"
class EddyScanningProbe:
def __init__(self, printer, sensor_helper, calibration, z_offset, gcmd):
self._printer = printer
self._sensor_helper = sensor_helper
self._calibration = calibration
self._z_offset = z_offset
self._gather = EddyGatherSamples(printer, sensor_helper,
calibration, z_offset)
self._sample_time_delay = 0.050
self._sample_time = gcmd.get_float("SAMPLE_TIME", 0.100, above=0.0)
self._is_rapid = gcmd.get("METHOD", "scan") == 'rapid_scan'
def _rapid_lookahead_cb(self, printtime):
start_time = printtime - self._sample_time / 2
self._gather.note_probe_and_position(
start_time, start_time + self._sample_time, printtime)
def run_probe(self, gcmd):
toolhead = self._printer.lookup_object("toolhead")
if self._is_rapid:
toolhead.register_lookahead_callback(self._rapid_lookahead_cb)
return
printtime = toolhead.get_last_move_time()
toolhead.dwell(self._sample_time_delay + self._sample_time)
start_time = printtime + self._sample_time_delay
self._gather.note_probe_and_position(
start_time, start_time + self._sample_time, start_time)
def pull_probed_results(self):
if self._is_rapid:
# Flush lookahead (so all lookahead callbacks are invoked)
toolhead = self._printer.lookup_object("toolhead")
toolhead.get_last_move_time()
results = self._gather.pull_probed()
# Allow axis_twist_compensation to update results
for epos in results:
self._printer.send_event("probe:update_results", epos)
return results
def end_probe_session(self):
self._gather.finish()
self._gather = None
# Main "printer object"
class PrinterEddyProbe:
def __init__(self, config):
self.printer = config.get_printer()
self.calibration = EddyCalibration(config)
# Sensor type
sensors = { "ldc1612": ldc1612.LDC1612 }
sensor_type = config.getchoice('sensor_type', {s: s for s in sensors})
self.sensor_helper = sensors[sensor_type](config, self.calibration)
# Probe interface
self.param_helper = probe.ProbeParameterHelper(config)
self.eddy_descend = EddyDescend(
config, self.sensor_helper, self.calibration, self.param_helper)
self.cmd_helper = probe.ProbeCommandHelper(config, self)
self.probe_offsets = probe.ProbeOffsetsHelper(config)
self.probe_session = probe.ProbeSessionHelper(
config, self.param_helper, self.eddy_descend.start_probe_session)
mcu_probe = EddyEndstopWrapper(self.sensor_helper, self.eddy_descend)
probe.HomingViaProbeHelper(config, mcu_probe, self.param_helper)
self.printer.add_object('probe', self)
def add_client(self, cb):
self.sensor_helper.add_client(cb)
def get_probe_params(self, gcmd=None):
return self.param_helper.get_probe_params(gcmd)
def get_offsets(self):
return self.probe_offsets.get_offsets()
def get_status(self, eventtime):
return self.cmd_helper.get_status(eventtime)
def start_probe_session(self, gcmd):
method = gcmd.get('METHOD', 'automatic').lower()
if method in ('scan', 'rapid_scan'):
z_offset = self.get_offsets()[2]
return EddyScanningProbe(self.printer, self.sensor_helper,
self.calibration, z_offset, gcmd)
return self.probe_session.start_probe_session(gcmd)
def register_drift_compensation(self, comp):
self.calibration.register_drift_compensation(comp)
class DummyDriftCompensation:
def get_temperature(self):
return 0.
def note_z_calibration_start(self):
pass
def note_z_calibration_finish(self):
pass
def adjust_freq(self, freq, temp=None):
return freq
def unadjust_freq(self, freq, temp=None):
return freq
def load_config_prefix(config):
return PrinterEddyProbe(config)
|