aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/extras/probe_eddy_current.py
blob: 5dc0f08bdcdd6bd5672bdf48cc3b10fed3bd1cf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Support for eddy current based Z probes
#
# Copyright (C) 2021-2024  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math, bisect
import mcu
from . import ldc1612, probe, manual_probe

# Tool for calibrating the sensor Z detection and applying that calibration
class EddyCalibration:
    def __init__(self, config):
        self.printer = config.get_printer()
        self.name = config.get_name()
        # Current calibration data
        self.cal_freqs = []
        self.cal_zpos = []
        cal = config.get('calibrate', None)
        if cal is not None:
            cal = [list(map(float, d.strip().split(':', 1)))
                   for d in cal.split(',')]
            self.load_calibration(cal)
        # Probe calibrate state
        self.probe_speed = 0.
        # Register commands
        cname = self.name.split()[-1]
        gcode = self.printer.lookup_object('gcode')
        gcode.register_mux_command("PROBE_EDDY_CURRENT_CALIBRATE", "CHIP",
                                   cname, self.cmd_EDDY_CALIBRATE,
                                   desc=self.cmd_EDDY_CALIBRATE_help)
    def load_calibration(self, cal):
        cal = sorted([(c[1], c[0]) for c in cal])
        self.cal_freqs = [c[0] for c in cal]
        self.cal_zpos = [c[1] for c in cal]
    def apply_calibration(self, samples):
        for i, (samp_time, freq, dummy_z) in enumerate(samples):
            pos = bisect.bisect(self.cal_freqs, freq)
            if pos >= len(self.cal_zpos):
                zpos = -99.9
            elif pos == 0:
                zpos = 99.9
            else:
                # XXX - optimize and avoid div by zero
                this_freq = self.cal_freqs[pos]
                prev_freq = self.cal_freqs[pos - 1]
                this_zpos = self.cal_zpos[pos]
                prev_zpos = self.cal_zpos[pos - 1]
                gain = (this_zpos - prev_zpos) / (this_freq - prev_freq)
                offset = prev_zpos - prev_freq * gain
                zpos = freq * gain + offset
            samples[i] = (samp_time, freq, round(zpos, 6))
    def do_calibration_moves(self, move_speed):
        toolhead = self.printer.lookup_object('toolhead')
        kin = toolhead.get_kinematics()
        move = toolhead.manual_move
        # Start data collection
        msgs = []
        is_finished = False
        def handle_batch(msg):
            if is_finished:
                return False
            msgs.append(msg)
            return True
        self.printer.lookup_object(self.name).add_client(handle_batch)
        toolhead.dwell(1.)
        # Move to each 50um position
        max_z = 4
        samp_dist = 0.050
        num_steps = int(max_z / samp_dist + .5) + 1
        start_pos = toolhead.get_position()
        times = []
        for i in range(num_steps):
            # Move to next position (always descending to reduce backlash)
            hop_pos = list(start_pos)
            hop_pos[2] += i * samp_dist + 0.500
            move(hop_pos, move_speed)
            next_pos = list(start_pos)
            next_pos[2] += i * samp_dist
            move(next_pos, move_speed)
            # Note sample timing
            start_query_time = toolhead.get_last_move_time() + 0.050
            end_query_time = start_query_time + 0.100
            toolhead.dwell(0.200)
            # Find Z position based on actual commanded stepper position
            toolhead.flush_step_generation()
            kin_spos = {s.get_name(): s.get_commanded_position()
                        for s in kin.get_steppers()}
            kin_pos = kin.calc_position(kin_spos)
            times.append((start_query_time, end_query_time, kin_pos[2]))
        toolhead.dwell(1.0)
        toolhead.wait_moves()
        # Finish data collection
        is_finished = True
        # Correlate query responses
        cal = {}
        step = 0
        for msg in msgs:
            for query_time, freq, old_z in msg['data']:
                # Add to step tracking
                while step < len(times) and query_time > times[step][1]:
                    step += 1
                if step < len(times) and query_time >= times[step][0]:
                    cal.setdefault(times[step][2], []).append(freq)
        if len(cal) != len(times):
            raise self.printer.command_error(
                "Failed calibration - incomplete sensor data")
        return cal
    def calc_freqs(self, meas):
        total_count = total_variance = 0
        positions = {}
        for pos, freqs in meas.items():
            count = len(freqs)
            freq_avg = float(sum(freqs)) / count
            positions[pos] = freq_avg
            total_count += count
            total_variance += sum([(f - freq_avg)**2 for f in freqs])
        return positions, math.sqrt(total_variance / total_count), total_count
    def post_manual_probe(self, kin_pos):
        if kin_pos is None:
            # Manual Probe was aborted
            return
        curpos = list(kin_pos)
        move = self.printer.lookup_object('toolhead').manual_move
        # Move away from the bed
        probe_calibrate_z = curpos[2]
        curpos[2] += 5.
        move(curpos, self.probe_speed)
        # Move sensor over nozzle position
        pprobe = self.printer.lookup_object("probe")
        x_offset, y_offset, z_offset = pprobe.get_offsets()
        curpos[0] -= x_offset
        curpos[1] -= y_offset
        move(curpos, self.probe_speed)
        # Descend back to bed
        curpos[2] -= 5. - 0.050
        move(curpos, self.probe_speed)
        # Perform calibration movement and capture
        cal = self.do_calibration_moves(self.probe_speed)
        # Calculate each sample position average and variance
        positions, std, total = self.calc_freqs(cal)
        last_freq = 0.
        for pos, freq in reversed(sorted(positions.items())):
            if freq <= last_freq:
                raise self.printer.command_error(
                    "Failed calibration - frequency not increasing each step")
            last_freq = freq
        gcode = self.printer.lookup_object("gcode")
        gcode.respond_info(
            "probe_eddy_current: stddev=%.3f in %d queries\n"
            "The SAVE_CONFIG command will update the printer config file\n"
            "and restart the printer." % (std, total))
        # Save results
        cal_contents = []
        for i, (pos, freq) in enumerate(sorted(positions.items())):
            if not i % 3:
                cal_contents.append('\n')
            cal_contents.append("%.6f:%.3f" % (pos - probe_calibrate_z, freq))
            cal_contents.append(',')
        cal_contents.pop()
        configfile = self.printer.lookup_object('configfile')
        configfile.set(self.name, 'calibrate', ''.join(cal_contents))
    cmd_EDDY_CALIBRATE_help = "Calibrate eddy current probe"
    def cmd_EDDY_CALIBRATE(self, gcmd):
        self.probe_speed = gcmd.get_float("PROBE_SPEED", 5., above=0.)
        # Start manual probe
        manual_probe.ManualProbeHelper(self.printer, gcmd,
                                       self.post_manual_probe)

# Main "printer object"
class PrinterEddyProbe:
    def __init__(self, config):
        self.printer = config.get_printer()
        self.calibration = EddyCalibration(config)
        # Sensor type
        sensors = { "ldc1612": ldc1612.LDC1612 }
        sensor_type = config.getchoice('sensor_type', {s: s for s in sensors})
        self.sensor_helper = sensors[sensor_type](config, self.calibration)
    def add_client(self, cb):
        self.sensor_helper.add_client(cb)

def load_config_prefix(config):
    return PrinterEddyProbe(config)