1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
# Support for a manual controlled stepper
#
# Copyright (C) 2019-2025 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import stepper, chelper
from . import force_move
class ManualStepper:
def __init__(self, config):
self.printer = config.get_printer()
if config.get('endstop_pin', None) is not None:
self.can_home = True
self.rail = stepper.LookupRail(
config, need_position_minmax=False, default_position_endstop=0.)
self.steppers = self.rail.get_steppers()
else:
self.can_home = False
self.rail = stepper.PrinterStepper(config)
self.steppers = [self.rail]
self.velocity = config.getfloat('velocity', 5., above=0.)
self.accel = self.homing_accel = config.getfloat('accel', 0., minval=0.)
self.next_cmd_time = 0.
self.pos_min = config.getfloat('position_min', None)
self.pos_max = config.getfloat('position_max', None)
# Setup iterative solver
ffi_main, ffi_lib = chelper.get_ffi()
self.trapq = ffi_main.gc(ffi_lib.trapq_alloc(), ffi_lib.trapq_free)
self.trapq_append = ffi_lib.trapq_append
self.trapq_finalize_moves = ffi_lib.trapq_finalize_moves
self.rail.setup_itersolve('cartesian_stepper_alloc', b'x')
self.rail.set_trapq(self.trapq)
# Registered with toolhead as an axtra axis
self.axis_gcode_id = None
self.instant_corner_v = 0.
self.gaxis_limit_velocity = self.gaxis_limit_accel = 0.
# Register commands
stepper_name = config.get_name().split()[1]
gcode = self.printer.lookup_object('gcode')
gcode.register_mux_command('MANUAL_STEPPER', "STEPPER",
stepper_name, self.cmd_MANUAL_STEPPER,
desc=self.cmd_MANUAL_STEPPER_help)
def sync_print_time(self):
toolhead = self.printer.lookup_object('toolhead')
print_time = toolhead.get_last_move_time()
if self.next_cmd_time > print_time:
toolhead.dwell(self.next_cmd_time - print_time)
else:
self.next_cmd_time = print_time
def do_enable(self, enable):
self.sync_print_time()
stepper_enable = self.printer.lookup_object('stepper_enable')
if enable:
for s in self.steppers:
se = stepper_enable.lookup_enable(s.get_name())
se.motor_enable(self.next_cmd_time)
else:
for s in self.steppers:
se = stepper_enable.lookup_enable(s.get_name())
se.motor_disable(self.next_cmd_time)
self.sync_print_time()
def do_set_position(self, setpos):
self.rail.set_position([setpos, 0., 0.])
def _submit_move(self, movetime, movepos, speed, accel):
cp = self.rail.get_commanded_position()
dist = movepos - cp
axis_r, accel_t, cruise_t, cruise_v = force_move.calc_move_time(
dist, speed, accel)
self.trapq_append(self.trapq, movetime,
accel_t, cruise_t, accel_t,
cp, 0., 0., axis_r, 0., 0.,
0., cruise_v, accel)
return movetime + accel_t + cruise_t + accel_t
def do_move(self, movepos, speed, accel, sync=True):
self.sync_print_time()
self.next_cmd_time = self._submit_move(self.next_cmd_time, movepos,
speed, accel)
self.rail.generate_steps(self.next_cmd_time)
self.trapq_finalize_moves(self.trapq, self.next_cmd_time + 99999.9,
self.next_cmd_time + 99999.9)
toolhead = self.printer.lookup_object('toolhead')
toolhead.note_mcu_movequeue_activity(self.next_cmd_time)
if sync:
self.sync_print_time()
def do_homing_move(self, movepos, speed, accel, triggered, check_trigger):
if not self.can_home:
raise self.printer.command_error(
"No endstop for this manual stepper")
self.homing_accel = accel
pos = [movepos, 0., 0., 0.]
endstops = self.rail.get_endstops()
phoming = self.printer.lookup_object('homing')
phoming.manual_home(self, endstops, pos, speed,
triggered, check_trigger)
cmd_MANUAL_STEPPER_help = "Command a manually configured stepper"
def cmd_MANUAL_STEPPER(self, gcmd):
if gcmd.get('GCODE_AXIS', None) is not None:
return self.command_with_gcode_axis(gcmd)
if self.axis_gcode_id is not None:
raise gcmd.error("Must unregister from gcode axis first")
enable = gcmd.get_int('ENABLE', None)
if enable is not None:
self.do_enable(enable)
setpos = gcmd.get_float('SET_POSITION', None)
if setpos is not None:
self.do_set_position(setpos)
speed = gcmd.get_float('SPEED', self.velocity, above=0.)
accel = gcmd.get_float('ACCEL', self.accel, minval=0.)
homing_move = gcmd.get_int('STOP_ON_ENDSTOP', 0)
if homing_move:
movepos = gcmd.get_float('MOVE')
if ((self.pos_min is not None and movepos < self.pos_min)
or (self.pos_max is not None and movepos > self.pos_max)):
raise gcmd.error("Move out of range")
self.do_homing_move(movepos, speed, accel,
homing_move > 0, abs(homing_move) == 1)
elif gcmd.get_float('MOVE', None) is not None:
movepos = gcmd.get_float('MOVE')
if ((self.pos_min is not None and movepos < self.pos_min)
or (self.pos_max is not None and movepos > self.pos_max)):
raise gcmd.error("Move out of range")
sync = gcmd.get_int('SYNC', 1)
self.do_move(movepos, speed, accel, sync)
elif gcmd.get_int('SYNC', 0):
self.sync_print_time()
# Register as a gcode axis
def command_with_gcode_axis(self, gcmd):
gcode_move = self.printer.lookup_object("gcode_move")
toolhead = self.printer.lookup_object('toolhead')
gcode_axis = gcmd.get('GCODE_AXIS').upper()
instant_corner_v = gcmd.get_float('INSTANTANEOUS_CORNER_VELOCITY', 1.,
minval=0.)
limit_velocity = gcmd.get_float('LIMIT_VELOCITY', 999999.9, above=0.)
limit_accel = gcmd.get_float('LIMIT_ACCEL', 999999.9, above=0.)
if self.axis_gcode_id is not None:
if gcode_axis:
raise gcmd.error("Must unregister axis first")
# Unregister
toolhead.remove_extra_axis(self)
toolhead.unregister_step_generator(self.rail.generate_steps)
self.axis_gcode_id = None
return
if (len(gcode_axis) != 1 or not gcode_axis.isupper()
or gcode_axis in "XYZEFN"):
if not gcode_axis:
# Request to unregister already unregistered axis
return
raise gcmd.error("Not a valid GCODE_AXIS")
for ea in toolhead.get_extra_axes():
if ea is not None and ea.get_axis_gcode_id() == gcode_axis:
raise gcmd.error("Axis '%s' already registered" % (gcode_axis,))
self.axis_gcode_id = gcode_axis
self.instant_corner_v = instant_corner_v
self.gaxis_limit_velocity = limit_velocity
self.gaxis_limit_accel = limit_accel
toolhead.add_extra_axis(self, self.get_position()[0])
toolhead.register_step_generator(self.rail.generate_steps)
def process_move(self, print_time, move, ea_index):
axis_r = move.axes_r[ea_index]
start_pos = move.start_pos[ea_index]
accel = move.accel * axis_r
start_v = move.start_v * axis_r
cruise_v = move.cruise_v * axis_r
self.trapq_append(self.trapq, print_time,
move.accel_t, move.cruise_t, move.decel_t,
start_pos, 0., 0.,
1., 0., 0.,
start_v, cruise_v, accel)
def check_move(self, move, ea_index):
# Check move is in bounds
movepos = move.end_pos[ea_index]
if ((self.pos_min is not None and movepos < self.pos_min)
or (self.pos_max is not None and movepos > self.pos_max)):
raise move.move_error()
# Check if need to limit maximum velocity and acceleration
axis_ratio = move.move_d / abs(move.axes_d[ea_index])
limit_velocity = self.gaxis_limit_velocity * axis_ratio
limit_accel = self.gaxis_limit_accel * axis_ratio
if not move.is_kinematic_move and self.accel:
limit_accel = min(limit_accel, self.accel * axis_ratio)
move.limit_speed(limit_velocity, limit_accel)
def calc_junction(self, prev_move, move, ea_index):
diff_r = move.axes_r[ea_index] - prev_move.axes_r[ea_index]
if diff_r:
return (self.instant_corner_v / abs(diff_r))**2
return move.max_cruise_v2
def get_axis_gcode_id(self):
return self.axis_gcode_id
def get_trapq(self):
return self.trapq
# Toolhead wrappers to support homing
def flush_step_generation(self):
self.sync_print_time()
def get_position(self):
return [self.rail.get_commanded_position(), 0., 0., 0.]
def set_position(self, newpos, homing_axes=""):
self.do_set_position(newpos[0])
def get_last_move_time(self):
self.sync_print_time()
return self.next_cmd_time
def dwell(self, delay):
self.next_cmd_time += max(0., delay)
def drip_move(self, newpos, speed, drip_completion):
# Submit move to trapq
self.sync_print_time()
maxtime = self._submit_move(self.next_cmd_time, newpos[0],
speed, self.homing_accel)
# Drip updates to motors
toolhead = self.printer.lookup_object('toolhead')
toolhead.drip_update_time(maxtime, drip_completion, self.steppers)
# Clear trapq of any remaining parts of movement
reactor = self.printer.get_reactor()
self.trapq_finalize_moves(self.trapq, reactor.NEVER, 0)
self.rail.set_position([newpos[0], 0., 0.])
self.sync_print_time()
def get_kinematics(self):
return self
def get_steppers(self):
return self.steppers
def calc_position(self, stepper_positions):
return [stepper_positions[self.rail.get_name()], 0., 0.]
def load_config_prefix(config):
return ManualStepper(config)
|