aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/extras/gcode_arcs.py
blob: b0d6e795a62d78c154a016e983b0f30aa008cfad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# adds support fro ARC commands via G2/G3
#
# Copyright (C) 2019  Aleksej Vasiljkovic <achmed21@gmail.com>
#
# function planArc() originates from https://github.com/MarlinFirmware/Marlin
# Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
#
# This file may be distributed under the terms of the GNU GPLv3 license.


# uses the plan_arc function from marlin which does steps in mm rather then
# in degrees. # Coordinates created by this are converted into G1 commands.
#
# note: only IJ version available

import math
import re

class ArcSupport:
    def __init__(self, config):
        self.printer = config.get_printer()
        self.mm_per_arc_segment = config.getfloat('resolution', 1)
        self.debug = True  #will respond motion to terminal as G1 code

        self.gcode = self.printer.lookup_object('gcode')
        self.gcode.register_command("G2", self.cmd_G2, desc=self.cmd_G2_help)
        self.gcode.register_command("G3", self.cmd_G2, desc=self.cmd_G3_help)

    cmd_G2_help = "Counterclockwise rotation move"
    cmd_G3_help = "Clockwise rotaion move"

    def cmd_G2(self, params):

        # set vars
        currentPos =  self.printer.lookup_object('toolhead').get_position()
        asStartX = currentPos[0]
        asStartY = currentPos[1]
        asStartZ = currentPos[2]

        asX = params.get("X", None)
        asY = params.get("Y", None)
        asZ = params.get("Z", None)

        asR = float(params.get("R", 0.))    #radius
        asI = float(params.get("I", 0.))
        asJ = float(params.get("J", 0.))

        asE = float(params.get("E", 0.))
        asF = float(params.get("F", -1))

        # --------- health checks of code -----------
        if (asX == None or asY == None):
            raise self.gcode.error("g2/g3: Coords missing")

        elif asR == 0 and asI == 0 and asJ==0:
            raise self.gcode.error("g2/g3: neither R nor I and J given")

        elif asR > 0 and (asI !=0 or asJ!=0):
            raise self.gcode.error("g2/g3: R, I and J were given. Invalid")
        else:   # -------- execute conversion -----------
            coords = []
            clockwise = params['#command'].lower().startswith("g2")
            asY = float(asY)
            asX = float(asX)

            # use radius
            # if asR > 0:
                # not sure if neccessary since R barely seems to be used

            # use IJK

            if asI != 0 or asJ!=0:
                coords = self.planArc(currentPos,
                            [asX,asY,0.,0.],
                            [asI, asJ],
                            clockwise)
            ###############################
            # converting coords into G1 codes (lazy aproch)
            if len(coords)>0:

                # build dict and call cmd_G1
                for coord in coords:
                    g1_params = {'X': coord[0], 'Y': coord[1]}
                    if asZ:
                        g1_params['Z']= float(asZ)/len(coords)
                    if asE>0:
                        g1_params['E']= float(asE)/len(coords)
                    if asF>0:
                        g1_params['F']= asF

                    self.gcode.cmd_G1(g1_params)




            else:
                self.gcode.respond_info(
                    "could not tranlate from '" + params['#original'] + "'")


    # function planArc() originates from marlin plan_arc()
    # https://github.com/MarlinFirmware/Marlin
    #
    # The arc is approximated by generating many small linear segments.
    # The length of each segment is configured in MM_PER_ARC_SEGMENT
    # Arcs smaller then this value, will be a Line only

    def planArc(
            self,
            currentPos,
            targetPos=[0.,0.,0.,0.],
            offset=[0.,0.],
            clockwise=False):
        # todo: sometimes produces full circles
        coords = []
        MM_PER_ARC_SEGMENT = self.mm_per_arc_segment

        X_AXIS = 0
        Y_AXIS = 1
        Z_AXIS = 2

        # Radius vector from center to current location
        r_P = offset[0]*-1
        r_Q = offset[1]*-1

        radius = math.hypot(r_P, r_Q)
        center_P = currentPos[X_AXIS] - r_P
        center_Q = currentPos[Y_AXIS] - r_Q
        rt_X = targetPos[X_AXIS] - center_P
        rt_Y = targetPos[Y_AXIS] - center_Q
        linear_travel = targetPos[Z_AXIS] - currentPos[Z_AXIS]

        angular_travel = math.atan2(r_P * rt_Y - r_Q * rt_X,
            r_P * rt_X + r_Q * rt_Y)
        if (angular_travel < 0): angular_travel+= math.radians(360)
        if (clockwise): angular_travel-= math.radians(360)

        # Make a circle if the angular rotation is 0
        # and the target is current position
        if (angular_travel == 0
            and currentPos[X_AXIS] == targetPos[X_AXIS]
            and currentPos[Y_AXIS] == targetPos[Y_AXIS]):
            angular_travel = math.radians(360)


        flat_mm = radius * angular_travel
        mm_of_travel = linear_travel
        if(mm_of_travel == linear_travel):
            mm_of_travel = math.hypot(flat_mm, linear_travel)
        else:
            mm_of_travel = math.abs(flat_mm)


        if (mm_of_travel < 0.001):
            return coords

        segments = int(math.floor(mm_of_travel / (MM_PER_ARC_SEGMENT)))
        if(segments<1):
            segments=1


        raw = [0.,0.,0.,0.]
        theta_per_segment = float(angular_travel / segments)
        linear_per_segment = float(linear_travel / segments)

        # Initialize the linear axis
        raw[Z_AXIS] = currentPos[Z_AXIS];


        for i in range(1,segments+1):
            cos_Ti = math.cos(i * theta_per_segment)
            sin_Ti = math.sin(i * theta_per_segment)
            r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti
            r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti

            raw[X_AXIS] = center_P + r_P
            raw[Y_AXIS] = center_Q + r_Q
            raw[Z_AXIS] += linear_per_segment

            coords.append([raw[X_AXIS],  raw[Y_AXIS], raw[Z_AXIS] ])

        return coords


def load_config(config):
    return ArcSupport(config)