aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/extras/bme280.py
blob: 44de9de3e913ced3d4d841ecfb17038aaac8029d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
# Support for i2c based temperature sensors
#
# Copyright (C) 2020  Eric Callahan <arksine.code@gmail.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
from . import bus

REPORT_TIME = 0.8
BME280_CHIP_ADDR = 0x76

BME280_REGS = {
    "RESET": 0xE0,
    "CTRL_HUM": 0xF2,
    "STATUS": 0xF3,
    "CTRL_MEAS": 0xF4,
    "CONFIG": 0xF5,
    "PRESSURE_MSB": 0xF7,
    "PRESSURE_LSB": 0xF8,
    "PRESSURE_XLSB": 0xF9,
    "TEMP_MSB": 0xFA,
    "TEMP_LSB": 0xFB,
    "TEMP_XLSB": 0xFC,
    "HUM_MSB": 0xFD,
    "HUM_LSB": 0xFE,
    "CAL_1": 0x88,
    "CAL_2": 0xE1,
}

BMP388_REGS = {
    "CMD": 0x7E,
    "STATUS": 0x03,
    "PWR_CTRL": 0x1B,
    "OSR": 0x1C,
    "ORD": 0x1D,
    "INT_CTRL": 0x19,
    "CAL_1": 0x31,
    "TEMP_MSB": 0x09,
    "TEMP_LSB": 0x08,
    "TEMP_XLSB": 0x07,
    "PRESS_MSB": 0x06,
    "PRESS_LSB": 0x05,
    "PRESS_XLSB": 0x04,
}
BMP388_REG_VAL_PRESS_EN = 0x01
BMP388_REG_VAL_TEMP_EN = 0x02
BMP388_REG_VAL_PRESS_OS_NO = 0b000
BMP388_REG_VAL_TEMP_OS_NO = 0b000000
BMP388_REG_VAL_ODR_50_HZ = 0x02
BMP388_REG_VAL_DRDY_EN = 0b100000
BMP388_REG_VAL_NORMAL_MODE = 0x30

BME680_REGS = {
    "RESET": 0xE0,
    "CTRL_HUM": 0x72,
    "CTRL_GAS_1": 0x71,
    "CTRL_GAS_0": 0x70,
    "GAS_WAIT_0": 0x64,
    "RES_HEAT_0": 0x5A,
    "IDAC_HEAT_0": 0x50,
    "STATUS": 0x73,
    "EAS_STATUS_0": 0x1D,
    "CTRL_MEAS": 0x74,
    "CONFIG": 0x75,
    "GAS_R_LSB": 0x2B,
    "GAS_R_MSB": 0x2A,
    "PRESSURE_MSB": 0x1F,
    "PRESSURE_LSB": 0x20,
    "PRESSURE_XLSB": 0x21,
    "TEMP_MSB": 0x22,
    "TEMP_LSB": 0x23,
    "TEMP_XLSB": 0x24,
    "HUM_MSB": 0x25,
    "HUM_LSB": 0x26,
    "CAL_1": 0x88,
    "CAL_2": 0xE1,
    "RES_HEAT_VAL": 0x00,
    "RES_HEAT_RANGE": 0x02,
    "RANGE_SWITCHING_ERROR": 0x04,
}

BME680_GAS_CONSTANTS = {
    0: (1.0, 8000000.0),
    1: (1.0, 4000000.0),
    2: (1.0, 2000000.0),
    3: (1.0, 1000000.0),
    4: (1.0, 499500.4995),
    5: (0.99, 248262.1648),
    6: (1.0, 125000.0),
    7: (0.992, 63004.03226),
    8: (1.0, 31281.28128),
    9: (1.0, 15625.0),
    10: (0.998, 7812.5),
    11: (0.995, 3906.25),
    12: (1.0, 1953.125),
    13: (0.99, 976.5625),
    14: (1.0, 488.28125),
    15: (1.0, 244.140625),
}

BMP180_REGS = {
    "RESET": 0xE0,
    "CAL_1": 0xAA,
    "CTRL_MEAS": 0xF4,
    "REG_MSB": 0xF6,
    "REG_LSB": 0xF7,
    "CRV_TEMP": 0x2E,
    "CRV_PRES": 0x34,
}

STATUS_MEASURING = 1 << 3
STATUS_IM_UPDATE = 1
MODE = 1
MODE_PERIODIC = 3
RUN_GAS = 1 << 4
NB_CONV_0 = 0
EAS_NEW_DATA = 1 << 7
GAS_DONE = 1 << 6
MEASURE_DONE = 1 << 5
RESET_CHIP_VALUE = 0xB6

BME_CHIPS = {
    0x58: "BMP280",
    0x60: "BME280",
    0x61: "BME680",
    0x55: "BMP180",
    0x50: "BMP388",
}
BME_CHIP_ID_REG = 0xD0
BMP3_CHIP_ID_REG = 0x00


def get_twos_complement(val, bit_size):
    if val & (1 << (bit_size - 1)):
        val -= 1 << bit_size
    return val


def get_unsigned_short(bits):
    return bits[1] << 8 | bits[0]


def get_signed_short(bits):
    val = get_unsigned_short(bits)
    return get_twos_complement(val, 16)


def get_signed_byte(bits):
    return get_twos_complement(bits, 8)


def get_unsigned_short_msb(bits):
    return bits[0] << 8 | bits[1]


def get_signed_short_msb(bits):
    val = get_unsigned_short_msb(bits)
    return get_twos_complement(val, 16)


class BME280:
    def __init__(self, config):
        self.printer = config.get_printer()
        self.name = config.get_name().split()[-1]
        self.reactor = self.printer.get_reactor()
        self.i2c = bus.MCU_I2C_from_config(
            config, default_addr=BME280_CHIP_ADDR, default_speed=100000
        )
        self.mcu = self.i2c.get_mcu()
        self.iir_filter = config.getint("bme280_iir_filter", 1)
        self.os_temp = config.getint("bme280_oversample_temp", 2)
        self.os_hum = config.getint("bme280_oversample_hum", 2)
        self.os_pres = config.getint("bme280_oversample_pressure", 2)
        self.gas_heat_temp = config.getint("bme280_gas_target_temp", 320)
        self.gas_heat_duration = config.getint("bme280_gas_heat_duration", 150)
        logging.info(
            "BMxx80: Oversampling: Temp %dx Humid %dx Pressure %dx"
            % (
                pow(2, self.os_temp - 1),
                pow(2, self.os_hum - 1),
                pow(2, self.os_pres - 1),
            )
        )
        logging.info("BMxx80: IIR: %dx" % (pow(2, self.iir_filter) - 1))
        self.iir_filter = self.iir_filter & 0x07

        self.temp = self.pressure = self.humidity = self.gas = self.t_fine = 0.0
        self.min_temp = self.max_temp = self.range_switching_error = 0.0
        self.max_sample_time = None
        self.dig = self.sample_timer = None
        self.chip_type = "BMP280"
        self.chip_registers = BME280_REGS
        self.printer.add_object("bme280 " + self.name, self)
        if self.printer.get_start_args().get("debugoutput") is not None:
            return
        self.printer.register_event_handler("klippy:connect", self.handle_connect)
        self.last_gas_time = 0

    def handle_connect(self):
        self._init_bmxx80()
        self.reactor.update_timer(self.sample_timer, self.reactor.NOW)

    def setup_minmax(self, min_temp, max_temp):
        self.min_temp = min_temp
        self.max_temp = max_temp

    def setup_callback(self, cb):
        self._callback = cb

    def get_report_time_delta(self):
        return REPORT_TIME

    def _init_bmxx80(self):
        def read_calibration_data_bmp280(calib_data_1):
            dig = {}
            dig["T1"] = get_unsigned_short(calib_data_1[0:2])
            dig["T2"] = get_signed_short(calib_data_1[2:4])
            dig["T3"] = get_signed_short(calib_data_1[4:6])

            dig["P1"] = get_unsigned_short(calib_data_1[6:8])
            dig["P2"] = get_signed_short(calib_data_1[8:10])
            dig["P3"] = get_signed_short(calib_data_1[10:12])
            dig["P4"] = get_signed_short(calib_data_1[12:14])
            dig["P5"] = get_signed_short(calib_data_1[14:16])
            dig["P6"] = get_signed_short(calib_data_1[16:18])
            dig["P7"] = get_signed_short(calib_data_1[18:20])
            dig["P8"] = get_signed_short(calib_data_1[20:22])
            dig["P9"] = get_signed_short(calib_data_1[22:24])
            return dig

        def read_calibration_data_bmp388(calib_data_1):
            dig = {}
            dig["T1"] = get_unsigned_short(calib_data_1[0:2]) / 0.00390625
            dig["T2"] = get_unsigned_short(calib_data_1[2:4]) / 1073741824.0
            dig["T3"] = get_signed_byte(calib_data_1[4]) / 281474976710656.0

            dig["P1"] = get_signed_short(calib_data_1[5:7]) - 16384
            dig["P1"] /= 1048576.0
            dig["P2"] = get_signed_short(calib_data_1[7:9]) - 16384
            dig["P2"] /= 536870912.0
            dig["P3"] = get_signed_byte(calib_data_1[9]) / 4294967296.0
            dig["P4"] = get_signed_byte(calib_data_1[10]) / 137438953472.0
            dig["P5"] = get_unsigned_short(calib_data_1[11:13]) / 0.125
            dig["P6"] = get_unsigned_short(calib_data_1[13:15]) / 64.0
            dig["P7"] = get_signed_byte(calib_data_1[15]) / 256.0
            dig["P8"] = get_signed_byte(calib_data_1[16]) / 32768.0
            dig["P9"] = get_signed_short(calib_data_1[17:19])
            dig["P9"] /= 281474976710656.0
            dig["P10"] = get_signed_byte(calib_data_1[19]) / 281474976710656.0
            dig["P11"] = get_signed_byte(calib_data_1[20])
            dig["P11"] /= 36893488147419103232.0
            return dig

        def read_calibration_data_bme280(calib_data_1, calib_data_2):
            dig = read_calibration_data_bmp280(calib_data_1)
            dig["H1"] = calib_data_1[25] & 0xFF
            dig["H2"] = get_signed_short(calib_data_2[0:2])
            dig["H3"] = calib_data_2[2] & 0xFF
            dig["H4"] = get_twos_complement(
                (calib_data_2[3] << 4) | (calib_data_2[4] & 0x0F), 12
            )
            dig["H5"] = get_twos_complement(
                (calib_data_2[5] << 4) | ((calib_data_2[4] & 0xF0) >> 4), 12
            )
            dig["H6"] = get_twos_complement(calib_data_2[6], 8)
            return dig

        def read_calibration_data_bme680(calib_data_1, calib_data_2):
            dig = {}
            dig["T1"] = get_unsigned_short(calib_data_2[8:10])
            dig["T2"] = get_signed_short(calib_data_1[2:4])
            dig["T3"] = get_signed_byte(calib_data_1[4])

            dig["P1"] = get_unsigned_short(calib_data_1[6:8])
            dig["P2"] = get_signed_short(calib_data_1[8:10])
            dig["P3"] = calib_data_1[10]
            dig["P4"] = get_signed_short(calib_data_1[12:14])
            dig["P5"] = get_signed_short(calib_data_1[14:16])
            dig["P6"] = get_signed_byte(calib_data_1[17])
            dig["P7"] = get_signed_byte(calib_data_1[16])
            dig["P8"] = get_signed_short(calib_data_1[20:22])
            dig["P9"] = get_signed_short(calib_data_1[22:24])
            dig["P10"] = calib_data_1[24]

            dig["H1"] = get_twos_complement(
                (calib_data_2[2] << 4) | (calib_data_2[1] & 0x0F), 12
            )
            dig["H2"] = get_twos_complement(
                (calib_data_2[0] << 4) | ((calib_data_2[1] & 0xF0) >> 4), 12
            )
            dig["H3"] = get_signed_byte(calib_data_2[3])
            dig["H4"] = get_signed_byte(calib_data_2[4])
            dig["H5"] = get_signed_byte(calib_data_2[5])
            dig["H6"] = calib_data_2[6]
            dig["H7"] = get_signed_byte(calib_data_2[7])

            dig["G1"] = get_signed_byte(calib_data_2[12])
            dig["G2"] = get_signed_short(calib_data_2[10:12])
            dig["G3"] = get_signed_byte(calib_data_2[13])
            return dig

        def read_calibration_data_bmp180(calib_data_1):
            dig = {}
            dig["AC1"] = get_signed_short_msb(calib_data_1[0:2])
            dig["AC2"] = get_signed_short_msb(calib_data_1[2:4])
            dig["AC3"] = get_signed_short_msb(calib_data_1[4:6])
            dig["AC4"] = get_unsigned_short_msb(calib_data_1[6:8])
            dig["AC5"] = get_unsigned_short_msb(calib_data_1[8:10])
            dig["AC6"] = get_unsigned_short_msb(calib_data_1[10:12])

            dig["B1"] = get_signed_short_msb(calib_data_1[12:14])
            dig["B2"] = get_signed_short_msb(calib_data_1[14:16])

            dig["MB"] = get_signed_short_msb(calib_data_1[16:18])
            dig["MC"] = get_signed_short_msb(calib_data_1[18:20])
            dig["MD"] = get_signed_short_msb(calib_data_1[20:22])
            return dig

        chip_id = self.read_id() or self.read_bmp3_id()
        if chip_id not in BME_CHIPS.keys():
            logging.info("bme280: Unknown Chip ID received %#x" % chip_id)
        else:
            self.chip_type = BME_CHIPS[chip_id]
            logging.info(
                "bme280: Found Chip %s at %#x" % (self.chip_type, self.i2c.i2c_address)
            )

        # Reset chip
        self.write_register("RESET", [RESET_CHIP_VALUE], wait=True)
        self.reactor.pause(self.reactor.monotonic() + 0.5)

        # Make sure non-volatile memory has been copied to registers
        if self.chip_type != "BMP180":
            # BMP180 has no status register available
            status = self.read_register("STATUS", 1)[0]
            while status & STATUS_IM_UPDATE:
                self.reactor.pause(self.reactor.monotonic() + 0.01)
                status = self.read_register("STATUS", 1)[0]

        if self.chip_type == "BME680":
            self.max_sample_time = (
                1.25
                + (2.3 * self.os_temp)
                + ((2.3 * self.os_pres) + 0.575)
                + ((2.3 * self.os_hum) + 0.575)
            ) / 1000
            self.sample_timer = self.reactor.register_timer(self._sample_bme680)
            self.chip_registers = BME680_REGS
        elif self.chip_type == "BMP180":
            self.sample_timer = self.reactor.register_timer(self._sample_bmp180)
            self.chip_registers = BMP180_REGS
        elif self.chip_type == "BMP388":
            self.chip_registers = BMP388_REGS
            self.write_register(
                "PWR_CTRL",
                [
                    BMP388_REG_VAL_PRESS_EN
                    | BMP388_REG_VAL_TEMP_EN
                    | BMP388_REG_VAL_NORMAL_MODE
                ],
            )
            self.write_register(
                "OSR", [BMP388_REG_VAL_PRESS_OS_NO | BMP388_REG_VAL_TEMP_OS_NO]
            )
            self.write_register("ORD", [BMP388_REG_VAL_ODR_50_HZ])
            self.write_register("INT_CTRL", [BMP388_REG_VAL_DRDY_EN])

            self.sample_timer = self.reactor.register_timer(self._sample_bmp388)
        elif self.chip_type == "BME280":
            self.max_sample_time = (
                1.25
                + (2.3 * self.os_temp)
                + ((2.3 * self.os_pres) + 0.575)
                + ((2.3 * self.os_hum) + 0.575)
            ) / 1000
            self.sample_timer = self.reactor.register_timer(self._sample_bme280)
            self.chip_registers = BME280_REGS
        else:
            self.max_sample_time = (
                1.25 + (2.3 * self.os_temp) + ((2.3 * self.os_pres) + 0.575)
            ) / 1000
            self.sample_timer = self.reactor.register_timer(self._sample_bme280)
            self.chip_registers = BME280_REGS

        # Read out and calculate the trimming parameters
        if self.chip_type == "BMP180":
            cal_1 = self.read_register("CAL_1", 22)
        elif self.chip_type == "BMP388":
            cal_1 = self.read_register("CAL_1", 21)
        else:
            cal_1 = self.read_register("CAL_1", 26)
            cal_2 = self.read_register("CAL_2", 16)
        if self.chip_type == "BME280":
            self.dig = read_calibration_data_bme280(cal_1, cal_2)
        elif self.chip_type == "BMP280":
            self.dig = read_calibration_data_bmp280(cal_1)
        elif self.chip_type == "BME680":
            self.dig = read_calibration_data_bme680(cal_1, cal_2)
        elif self.chip_type == "BMP180":
            self.dig = read_calibration_data_bmp180(cal_1)
        elif self.chip_type == "BMP388":
            self.dig = read_calibration_data_bmp388(cal_1)

        if self.chip_type in ("BME280", "BMP280"):
            max_standby_time = REPORT_TIME - self.max_sample_time
            # 0.5 ms
            t_sb = 0
            if self.chip_type == "BME280":
                if max_standby_time > 1:
                    t_sb = 5
                elif max_standby_time > 0.5:
                    t_sb = 4
                elif max_standby_time > 0.25:
                    t_sb = 3
                elif max_standby_time > 0.125:
                    t_sb = 2
                elif max_standby_time > 0.0625:
                    t_sb = 1
                elif max_standby_time > 0.020:
                    t_sb = 7
                elif max_standby_time > 0.010:
                    t_sb = 6
            else:
                if max_standby_time > 4:
                    t_sb = 7
                elif max_standby_time > 2:
                    t_sb = 6
                elif max_standby_time > 1:
                    t_sb = 5
                elif max_standby_time > 0.5:
                    t_sb = 4
                elif max_standby_time > 0.25:
                    t_sb = 3
                elif max_standby_time > 0.125:
                    t_sb = 2
                elif max_standby_time > 0.0625:
                    t_sb = 1

            cfg = t_sb << 5 | self.iir_filter << 2
            self.write_register("CONFIG", cfg)
            if self.chip_type == "BME280":
                self.write_register("CTRL_HUM", self.os_hum)
            # Enter normal (periodic) mode
            meas = self.os_temp << 5 | self.os_pres << 2 | MODE_PERIODIC
            self.write_register("CTRL_MEAS", meas, wait=True)

        if self.chip_type == "BME680":
            self.write_register("CONFIG", self.iir_filter << 2)
            # Should be set once and reused on every mode register write
            self.write_register("CTRL_HUM", self.os_hum & 0x07)
            gas_wait_0 = self._calc_gas_heater_duration(self.gas_heat_duration)
            self.write_register("GAS_WAIT_0", [gas_wait_0])
            res_heat_0 = self._calc_gas_heater_resistance(self.gas_heat_temp)
            self.write_register("RES_HEAT_0", [res_heat_0])
            # Set initial heater current to reach Gas heater target on start
            self.write_register("IDAC_HEAT_0", 96)

    def _sample_bme280(self, eventtime):
        # In normal mode data shadowing is performed
        # So reading can be done while measurements are in process
        try:
            if self.chip_type == "BME280":
                data = self.read_register("PRESSURE_MSB", 8)
            elif self.chip_type == "BMP280":
                data = self.read_register("PRESSURE_MSB", 6)
            else:
                return self.reactor.NEVER
        except Exception:
            logging.exception("BME280: Error reading data")
            self.temp = self.pressure = self.humidity = 0.0
            return self.reactor.NEVER

        temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4)
        self.temp = self._compensate_temp(temp_raw)
        pressure_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4)
        self.pressure = self._compensate_pressure_bme280(pressure_raw) / 100.0
        if self.chip_type == "BME280":
            humid_raw = (data[6] << 8) | data[7]
            self.humidity = self._compensate_humidity_bme280(humid_raw)
        if self.temp < self.min_temp or self.temp > self.max_temp:
            self.printer.invoke_shutdown(
                "BME280 temperature %0.1f outside range of %0.1f:%.01f"
                % (self.temp, self.min_temp, self.max_temp)
            )
        measured_time = self.reactor.monotonic()
        self._callback(self.mcu.estimated_print_time(measured_time), self.temp)
        return measured_time + REPORT_TIME

    def _sample_bmp388(self, eventtime):
        status = self.read_register("STATUS", 1)
        if status[0] & 0b100000:
            self.temp = self._sample_bmp388_temp()
            if self.temp < self.min_temp or self.temp > self.max_temp:
                self.printer.invoke_shutdown(
                    "BME280 temperature %0.1f outside range of %0.1f:%.01f"
                    % (self.temp, self.min_temp, self.max_temp)
                )

        if status[0] & 0b010000:
            self.pressure = self._sample_bmp388_press() / 100.0

        measured_time = self.reactor.monotonic()
        self._callback(self.mcu.estimated_print_time(measured_time), self.temp)
        return measured_time + REPORT_TIME

    def _sample_bmp388_temp(self):
        xlsb = self.read_register("TEMP_XLSB", 1)
        lsb = self.read_register("TEMP_LSB", 1)
        msb = self.read_register("TEMP_MSB", 1)
        adc_T = (msb[0] << 16) + (lsb[0] << 8) + (xlsb[0])

        partial_data1 = adc_T - self.dig["T1"]
        partial_data2 = self.dig["T2"] * partial_data1

        self.t_fine = partial_data2
        self.t_fine += (partial_data1 * partial_data1) * self.dig["T3"]

        if self.t_fine < -40.0:
            self.t_fine = -40.0

        if self.t_fine > 85.0:
            self.t_fine = 85.0

        return self.t_fine

    def _sample_bmp388_press(self):
        xlsb = self.read_register("PRESS_XLSB", 1)
        lsb = self.read_register("PRESS_LSB", 1)
        msb = self.read_register("PRESS_MSB", 1)
        adc_P = (msb[0] << 16) + (lsb[0] << 8) + (xlsb[0])

        partial_data1 = self.dig["P6"] * self.t_fine
        partial_data2 = self.dig["P7"] * (self.t_fine * self.t_fine)
        partial_data3 = self.dig["P8"]
        partial_data3 *= self.t_fine * self.t_fine * self.t_fine
        partial_out1 = self.dig["P5"]
        partial_out1 += partial_data1 + partial_data2 + partial_data3

        partial_data1 = self.dig["P2"] * self.t_fine
        partial_data2 = self.dig["P3"] * (self.t_fine * self.t_fine)
        partial_data3 = self.dig["P4"]
        partial_data3 *= self.t_fine * self.t_fine * self.t_fine
        partial_out2 = adc_P * (
            self.dig["P1"] + partial_data1 + partial_data2 + partial_data3
        )

        partial_data1 = adc_P * adc_P
        partial_data2 = self.dig["P9"] + (self.dig["P10"] * self.t_fine)
        partial_data3 = partial_data1 * partial_data2
        partial_data4 = partial_data3 + adc_P * adc_P * adc_P * self.dig["P11"]

        comp_press = partial_out1 + partial_out2 + partial_data4

        if comp_press < 30000:
            comp_press = 30000

        if comp_press > 125000:
            comp_press = 125000

        return comp_press

    def _sample_bme680(self, eventtime):
        def data_ready(stat, run_gas):
            new_data = stat & EAS_NEW_DATA
            gas_done = not (stat & GAS_DONE)
            meas_done = not (stat & MEASURE_DONE)
            if not run_gas:
                gas_done = True
            return new_data and gas_done and meas_done

        run_gas = False
        # Check VOC once a while
        if self.reactor.monotonic() - self.last_gas_time > 3:
            gas_config = RUN_GAS | NB_CONV_0
            self.write_register("CTRL_GAS_1", [gas_config])
            run_gas = True

        # Enter forced mode
        meas = self.os_temp << 5 | self.os_pres << 2 | MODE
        self.write_register("CTRL_MEAS", meas, wait=True)
        max_sample_time = self.max_sample_time
        if run_gas:
            max_sample_time += self.gas_heat_duration / 1000
        self.reactor.pause(self.reactor.monotonic() + max_sample_time)
        try:
            # wait until results are ready
            status = self.read_register("EAS_STATUS_0", 1)[0]
            while not data_ready(status, run_gas):
                self.reactor.pause(self.reactor.monotonic() + self.max_sample_time)
                status = self.read_register("EAS_STATUS_0", 1)[0]

            data = self.read_register("PRESSURE_MSB", 8)
            gas_data = [0, 0]
            if run_gas:
                gas_data = self.read_register("GAS_R_MSB", 2)
        except Exception:
            logging.exception("BME680: Error reading data")
            self.temp = self.pressure = self.humidity = self.gas = 0.0
            return self.reactor.NEVER

        temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4)
        if temp_raw != 0x80000:
            self.temp = self._compensate_temp(temp_raw)
        pressure_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4)
        if pressure_raw != 0x80000:
            self.pressure = self._compensate_pressure_bme680(pressure_raw) / 100.0
        humid_raw = (data[6] << 8) | data[7]
        self.humidity = self._compensate_humidity_bme680(humid_raw)

        gas_valid = (gas_data[1] & 0x20) == 0x20
        if gas_valid:
            gas_heater_stable = (gas_data[1] & 0x10) == 0x10
            if not gas_heater_stable:
                logging.warning("BME680: Gas heater didn't reach target")
            gas_raw = (gas_data[0] << 2) | ((gas_data[1] & 0xC0) >> 6)
            gas_range = gas_data[1] & 0x0F
            self.gas = self._compensate_gas(gas_raw, gas_range)
            # Disable gas measurement on success
            gas_config = NB_CONV_0
            self.write_register("CTRL_GAS_1", [gas_config])
            self.last_gas_time = self.reactor.monotonic()

        if self.temp < self.min_temp or self.temp > self.max_temp:
            self.printer.invoke_shutdown(
                "BME680 temperature %0.1f outside range of %0.1f:%.01f"
                % (self.temp, self.min_temp, self.max_temp)
            )
        measured_time = self.reactor.monotonic()
        self._callback(self.mcu.estimated_print_time(measured_time), self.temp)
        return measured_time + REPORT_TIME

    def _sample_bmp180(self, eventtime):
        meas = self.chip_registers["CRV_TEMP"]
        self.write_register("CTRL_MEAS", meas)

        try:
            self.reactor.pause(self.reactor.monotonic() + 0.01)
            data = self.read_register("REG_MSB", 2)
            temp_raw = (data[0] << 8) | data[1]
        except Exception:
            logging.exception("BMP180: Error reading temperature")
            self.temp = self.pressure = 0.0
            return self.reactor.NEVER

        meas = self.chip_registers["CRV_PRES"] | (self.os_pres << 6)
        self.write_register("CTRL_MEAS", meas)

        try:
            self.reactor.pause(self.reactor.monotonic() + 0.01)
            data = self.read_register("REG_MSB", 3)
            pressure_raw = ((data[0] << 16) | (data[1] << 8) | data[2]) >> (
                8 - self.os_pres
            )
        except Exception:
            logging.exception("BMP180: Error reading pressure")
            self.temp = self.pressure = 0.0
            return self.reactor.NEVER

        self.temp = self._compensate_temp_bmp180(temp_raw)
        self.pressure = self._compensate_pressure_bmp180(pressure_raw) / 100.0
        if self.temp < self.min_temp or self.temp > self.max_temp:
            self.printer.invoke_shutdown(
                "BMP180 temperature %0.1f outside range of %0.1f:%.01f"
                % (self.temp, self.min_temp, self.max_temp)
            )
        measured_time = self.reactor.monotonic()
        self._callback(self.mcu.estimated_print_time(measured_time), self.temp)
        return measured_time + REPORT_TIME

    def _compensate_temp(self, raw_temp):
        dig = self.dig
        var1 = (raw_temp / 16384.0 - (dig["T1"] / 1024.0)) * dig["T2"]
        var2 = (
            ((raw_temp / 131072.0) - (dig["T1"] / 8192.0))
            * ((raw_temp / 131072.0) - (dig["T1"] / 8192.0))
            * dig["T3"]
        )
        self.t_fine = var1 + var2
        return self.t_fine / 5120.0

    def _compensate_pressure_bme280(self, raw_pressure):
        dig = self.dig
        t_fine = self.t_fine
        var1 = t_fine / 2.0 - 64000.0
        var2 = var1 * var1 * dig["P6"] / 32768.0
        var2 = var2 + var1 * dig["P5"] * 2.0
        var2 = var2 / 4.0 + (dig["P4"] * 65536.0)
        var1 = (dig["P3"] * var1 * var1 / 524288.0 + dig["P2"] * var1) / 524288.0
        var1 = (1.0 + var1 / 32768.0) * dig["P1"]
        if var1 == 0:
            return 0.0
        else:
            pressure = 1048576.0 - raw_pressure
            pressure = ((pressure - var2 / 4096.0) * 6250.0) / var1
            var1 = dig["P9"] * pressure * pressure / 2147483648.0
            var2 = pressure * dig["P8"] / 32768.0
            return pressure + (var1 + var2 + dig["P7"]) / 16.0

    def _compensate_pressure_bme680(self, raw_pressure):
        dig = self.dig
        t_fine = self.t_fine
        var1 = t_fine / 2.0 - 64000.0
        var2 = var1 * var1 * dig["P6"] / 131072.0
        var2 = var2 + var1 * dig["P5"] * 2.0
        var2 = var2 / 4.0 + (dig["P4"] * 65536.0)
        var1 = (dig["P3"] * var1 * var1 / 16384.0 + dig["P2"] * var1) / 524288.0
        var1 = (1.0 + var1 / 32768.0) * dig["P1"]
        if var1 == 0:
            return 0.0
        else:
            pressure = 1048576.0 - raw_pressure
            pressure = ((pressure - var2 / 4096.0) * 6250.0) / var1
            var1 = dig["P9"] * pressure * pressure / 2147483648.0
            var2 = pressure * dig["P8"] / 32768.0
            var3 = (
                (pressure / 256.0)
                * (pressure / 256.0)
                * (pressure / 256.0)
                * (dig["P10"] / 131072.0)
            )
            return pressure + (var1 + var2 + var3 + (dig["P7"] * 128.0)) / 16.0

    def _compensate_humidity_bme280(self, raw_humidity):
        dig = self.dig
        t_fine = self.t_fine
        humidity = t_fine - 76800.0
        h1 = raw_humidity - (dig["H4"] * 64.0 + dig["H5"] / 16384.0 * humidity)
        h2 = (
            dig["H2"]
            / 65536.0
            * (
                1.0
                + dig["H6"]
                / 67108864.0
                * humidity
                * (1.0 + dig["H3"] / 67108864.0 * humidity)
            )
        )
        humidity = h1 * h2
        humidity = humidity * (1.0 - dig["H1"] * humidity / 524288.0)
        return min(100.0, max(0.0, humidity))

    def _compensate_humidity_bme680(self, raw_humidity):
        dig = self.dig
        temp_comp = self.temp

        var1 = raw_humidity - ((dig["H1"] * 16.0) + ((dig["H3"] / 2.0) * temp_comp))
        var2 = var1 * (
            (dig["H2"] / 262144.0)
            * (
                1.0
                + ((dig["H4"] / 16384.0) * temp_comp)
                + ((dig["H5"] / 1048576.0) * temp_comp * temp_comp)
            )
        )
        var3 = dig["H6"] / 16384.0
        var4 = dig["H7"] / 2097152.0
        humidity = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2)
        return min(100.0, max(0.0, humidity))

    def _compensate_gas(self, gas_raw, gas_range):
        gas_switching_error = self.read_register("RANGE_SWITCHING_ERROR", 1)[0]
        var1 = (1340.0 + 5.0 * gas_switching_error) * BME680_GAS_CONSTANTS[gas_range][0]
        gas = var1 * BME680_GAS_CONSTANTS[gas_range][1] / (gas_raw - 512.0 + var1)
        return gas

    def _calc_gas_heater_resistance(self, target_temp):
        amb_temp = self.temp
        heater_data = self.read_register("RES_HEAT_VAL", 3)
        res_heat_val = get_signed_byte(heater_data[0])
        res_heat_range = (heater_data[2] & 0x30) >> 4
        dig = self.dig
        var1 = (dig["G1"] / 16.0) + 49.0
        var2 = ((dig["G2"] / 32768.0) * 0.0005) + 0.00235
        var3 = dig["G3"] / 1024.0
        var4 = var1 * (1.0 + (var2 * target_temp))
        var5 = var4 + (var3 * amb_temp)
        res_heat = 3.4 * (
            (
                var5
                * (4.0 / (4.0 + res_heat_range))
                * (1.0 / (1.0 + (res_heat_val * 0.002)))
            )
            - 25
        )
        return int(res_heat)

    def _calc_gas_heater_duration(self, duration_ms):
        if duration_ms >= 4032:
            duration_reg = 0xFF
        else:
            factor = 0
            while duration_ms > 0x3F:
                duration_ms //= 4
                factor += 1
            duration_reg = duration_ms + (factor * 64)

        return duration_reg

    def _compensate_temp_bmp180(self, raw_temp):
        dig = self.dig
        x1 = (raw_temp - dig["AC6"]) * dig["AC5"] / 32768.0
        x2 = dig["MC"] * 2048 / (x1 + dig["MD"])
        b5 = x1 + x2
        self.t_fine = b5
        return (b5 + 8) / 16.0 / 10.0

    def _compensate_pressure_bmp180(self, raw_pressure):
        dig = self.dig
        b5 = self.t_fine
        b6 = b5 - 4000
        x1 = (dig["B2"] * (b6 * b6 / 4096)) / 2048
        x2 = dig["AC2"] * b6 / 2048
        x3 = x1 + x2
        b3 = ((int(dig["AC1"] * 4 + x3) << self.os_pres) + 2) / 4
        x1 = dig["AC3"] * b6 / 8192
        x2 = (dig["B1"] * (b6 * b6 / 4096)) / 65536
        x3 = ((x1 + x2) + 2) / 4
        b4 = dig["AC4"] * (x3 + 32768) / 32768
        b7 = (raw_pressure - b3) * (50000 >> self.os_pres)
        if b7 < 0x80000000:
            p = (b7 * 2) / b4
        else:
            p = (b7 / b4) * 2
        x1 = (p / 256) * (p / 256)
        x1 = (x1 * 3038) / 65536
        x2 = (-7357 * p) / 65536
        p = p + (x1 + x2 + 3791) / 16.0
        return p

    def read_id(self):
        # read chip id register
        regs = [BME_CHIP_ID_REG]
        params = self.i2c.i2c_read(regs, 1)
        return bytearray(params["response"])[0]

    def read_bmp3_id(self):
        # read chip id register
        regs = [BMP3_CHIP_ID_REG]
        params = self.i2c.i2c_read(regs, 1)
        return bytearray(params["response"])[0]

    def read_register(self, reg_name, read_len):
        # read a single register
        regs = [self.chip_registers[reg_name]]
        params = self.i2c.i2c_read(regs, read_len)
        return bytearray(params["response"])

    def write_register(self, reg_name, data, wait=False):
        if type(data) is not list:
            data = [data]
        reg = self.chip_registers[reg_name]
        data.insert(0, reg)
        if not wait:
            self.i2c.i2c_write(data)
        else:
            self.i2c.i2c_write_wait_ack(data)

    def get_status(self, eventtime):
        data = {"temperature": round(self.temp, 2), "pressure": self.pressure}
        if self.chip_type in ("BME280", "BME680"):
            data["humidity"] = self.humidity
        if self.chip_type == "BME680":
            data["gas"] = self.gas
        return data


def load_config(config):
    # Register sensor
    pheaters = config.get_printer().load_object(config, "heaters")
    pheaters.add_sensor_factory("BME280", BME280)