aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/extras/bed_mesh.py
blob: a8e5764c05543a8a6870f2a32608158d59cd268f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
# Mesh Bed Leveling
#
# Copyright (C) 2018-2019 Eric Callahan <arksine.code@gmail.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math, json, collections
from . import probe

PROFILE_VERSION = 1
PROFILE_OPTIONS = {
    'min_x': float, 'max_x': float, 'min_y': float, 'max_y': float,
    'x_count': int, 'y_count': int, 'mesh_x_pps': int, 'mesh_y_pps': int,
    'algo': str, 'tension': float
}

class BedMeshError(Exception):
    pass

# PEP 485 isclose()
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
    return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)

# return true if a coordinate is within the region
# specified by min_c and max_c
def within(coord, min_c, max_c, tol=0.0):
    return (max_c[0] + tol) >= coord[0] >= (min_c[0] - tol) and \
        (max_c[1] + tol) >= coord[1] >= (min_c[1] - tol)

# Constrain value between min and max
def constrain(val, min_val, max_val):
    return min(max_val, max(min_val, val))

# Linear interpolation between two values
def lerp(t, v0, v1):
    return (1. - t) * v0 + t * v1

# retrieve comma separated pair from config
def parse_config_pair(config, option, default, minval=None, maxval=None):
    pair = config.getintlist(option, (default, default))
    if len(pair) != 2:
        if len(pair) != 1:
            raise config.error("bed_mesh: malformed '%s' value: %s"
                               % (option, config.get(option)))
        pair = (pair[0], pair[0])
    if minval is not None:
        if pair[0] < minval or pair[1] < minval:
            raise config.error(
                "Option '%s' in section bed_mesh must have a minimum of %s"
                % (option, str(minval)))
    if maxval is not None:
        if pair[0] > maxval or pair[1] > maxval:
            raise config.error(
                "Option '%s' in section bed_mesh must have a maximum of %s"
                % (option, str(maxval)))
    return pair

# retrieve comma separated pair from a g-code command
def parse_gcmd_pair(gcmd, name, minval=None, maxval=None):
    try:
        pair = [int(v.strip()) for v in gcmd.get(name).split(',')]
    except:
        raise gcmd.error("Unable to parse parameter '%s'" % (name,))
    if len(pair) != 2:
        if len(pair) != 1:
            raise gcmd.error("Unable to parse parameter '%s'" % (name,))
        pair = (pair[0], pair[0])
    if minval is not None:
        if pair[0] < minval or pair[1] < minval:
            raise gcmd.error("Parameter '%s' must have a minimum of %d"
                             % (name, minval))
    if maxval is not None:
        if pair[0] > maxval or pair[1] > maxval:
            raise gcmd.error("Parameter '%s' must have a maximum of %d"
                             % (name, maxval))
    return pair

# retrieve comma separated coordinate from a g-code command
def parse_gcmd_coord(gcmd, name):
    try:
        v1, v2 = [float(v.strip()) for v in gcmd.get(name).split(',')]
    except:
        raise gcmd.error("Unable to parse parameter '%s'" % (name,))
    return v1, v2


class BedMesh:
    FADE_DISABLE = 0x7FFFFFFF
    def __init__(self, config):
        self.printer = config.get_printer()
        self.printer.register_event_handler("klippy:connect",
                                            self.handle_connect)
        self.last_position = [0., 0., 0., 0.]
        self.bmc = BedMeshCalibrate(config, self)
        self.z_mesh = None
        self.toolhead = None
        self.horizontal_move_z = config.getfloat('horizontal_move_z', 5.)
        self.fade_start = config.getfloat('fade_start', 1.)
        self.fade_end = config.getfloat('fade_end', 0.)
        self.fade_dist = self.fade_end - self.fade_start
        if self.fade_dist <= 0.:
            self.fade_start = self.fade_end = self.FADE_DISABLE
        self.log_fade_complete = False
        self.base_fade_target = config.getfloat('fade_target', None)
        self.fade_target = 0.
        self.tool_offset = 0.
        self.gcode = self.printer.lookup_object('gcode')
        self.splitter = MoveSplitter(config, self.gcode)
        # setup persistent storage
        self.pmgr = ProfileManager(config, self)
        self.save_profile = self.pmgr.save_profile
        # register gcodes
        self.gcode.register_command(
            'BED_MESH_OUTPUT', self.cmd_BED_MESH_OUTPUT,
            desc=self.cmd_BED_MESH_OUTPUT_help)
        self.gcode.register_command(
            'BED_MESH_MAP', self.cmd_BED_MESH_MAP,
            desc=self.cmd_BED_MESH_MAP_help)
        self.gcode.register_command(
            'BED_MESH_CLEAR', self.cmd_BED_MESH_CLEAR,
            desc=self.cmd_BED_MESH_CLEAR_help)
        self.gcode.register_command(
            'BED_MESH_OFFSET', self.cmd_BED_MESH_OFFSET,
            desc=self.cmd_BED_MESH_OFFSET_help)
        # Register dump webhooks
        webhooks = self.printer.lookup_object('webhooks')
        webhooks.register_endpoint(
            "bed_mesh/dump_mesh", self._handle_dump_request
        )
        # Register transform
        gcode_move = self.printer.load_object(config, 'gcode_move')
        gcode_move.set_move_transform(self)
        # initialize status dict
        self.update_status()
    def handle_connect(self):
        self.toolhead = self.printer.lookup_object('toolhead')
        self.bmc.print_generated_points(logging.info, truncate=True)
    def set_mesh(self, mesh):
        if mesh is not None and self.fade_end != self.FADE_DISABLE:
            self.log_fade_complete = True
            if self.base_fade_target is None:
                self.fade_target = mesh.get_z_average()
            else:
                self.fade_target = self.base_fade_target
                min_z, max_z = mesh.get_z_range()
                if (not min_z <= self.fade_target <= max_z and
                        self.fade_target != 0.):
                    # fade target is non-zero, out of mesh range
                    err_target = self.fade_target
                    self.z_mesh = None
                    self.fade_target = 0.
                    raise self.gcode.error(
                        "bed_mesh: ERROR, fade_target lies outside of mesh z "
                        "range\nmin: %.4f, max: %.4f, fade_target: %.4f"
                        % (min_z, max_z, err_target))
            min_z, max_z = mesh.get_z_range()
            if self.fade_dist <= max(abs(min_z), abs(max_z)):
                self.z_mesh = None
                self.fade_target = 0.
                raise self.gcode.error(
                    "bed_mesh:  Mesh extends outside of the fade range, "
                    "please see the fade_start and fade_end options in"
                    "example-extras.cfg. fade distance: %.2f mesh min: %.4f"
                    "mesh max: %.4f" % (self.fade_dist, min_z, max_z))
        else:
            self.fade_target = 0.
        self.tool_offset = 0.
        self.z_mesh = mesh
        self.splitter.initialize(mesh, self.fade_target)
        # cache the current position before a transform takes place
        gcode_move = self.printer.lookup_object('gcode_move')
        gcode_move.reset_last_position()
        self.update_status()
    def get_z_factor(self, z_pos):
        z_pos += self.tool_offset
        if z_pos >= self.fade_end:
            return 0.
        elif z_pos >= self.fade_start:
            return (self.fade_end - z_pos) / self.fade_dist
        else:
            return 1.
    def get_position(self):
        # Return last, non-transformed position
        if self.z_mesh is None:
            # No mesh calibrated, so send toolhead position
            self.last_position[:] = self.toolhead.get_position()
            self.last_position[2] -= self.fade_target
        else:
            # return current position minus the current z-adjustment
            cur_pos = self.toolhead.get_position()
            x, y, z = cur_pos[:3]
            max_adj = self.z_mesh.calc_z(x, y)
            factor = 1.
            z_adj = max_adj - self.fade_target
            fade_z_pos = z + self.tool_offset
            if min(fade_z_pos, (fade_z_pos - max_adj)) >= self.fade_end:
                # Fade out is complete, no factor
                factor = 0.
            elif max(fade_z_pos, (fade_z_pos - max_adj)) >= self.fade_start:
                # Likely in the process of fading out adjustment.
                # Because we don't yet know the gcode z position, use
                # algebra to calculate the factor from the toolhead pos
                factor = ((self.fade_end + self.fade_target - fade_z_pos) /
                          (self.fade_dist - z_adj))
                factor = constrain(factor, 0., 1.)
            final_z_adj = factor * z_adj + self.fade_target
            self.last_position[:] = [x, y, z - final_z_adj] + cur_pos[3:]
        return list(self.last_position)
    def move(self, newpos, speed):
        factor = self.get_z_factor(newpos[2])
        if self.z_mesh is None or not factor:
            # No mesh calibrated, or mesh leveling phased out.
            x, y, z = newpos[:3]
            if self.log_fade_complete:
                self.log_fade_complete = False
                logging.info(
                    "bed_mesh fade complete: Current Z: %.4f fade_target: %.4f "
                    % (z, self.fade_target))
            self.toolhead.move([x, y, z + self.fade_target] + newpos[3:], speed)
        else:
            self.splitter.build_move(self.last_position, newpos, factor)
            while not self.splitter.traverse_complete:
                split_move = self.splitter.split()
                if split_move:
                    self.toolhead.move(split_move, speed)
                else:
                    raise self.gcode.error(
                        "Mesh Leveling: Error splitting move ")
        self.last_position[:] = newpos
    def get_status(self, eventtime=None):
        return self.status
    def update_status(self):
        self.status = {
            "profile_name": "",
            "mesh_min": (0., 0.),
            "mesh_max": (0., 0.),
            "probed_matrix": [[]],
            "mesh_matrix": [[]],
            "profiles": self.pmgr.get_profiles()
        }
        if self.z_mesh is not None:
            params = self.z_mesh.get_mesh_params()
            mesh_min = (params['min_x'], params['min_y'])
            mesh_max = (params['max_x'], params['max_y'])
            probed_matrix = self.z_mesh.get_probed_matrix()
            mesh_matrix = self.z_mesh.get_mesh_matrix()
            self.status['profile_name'] = self.z_mesh.get_profile_name()
            self.status['mesh_min'] = mesh_min
            self.status['mesh_max'] = mesh_max
            self.status['probed_matrix'] = probed_matrix
            self.status['mesh_matrix'] = mesh_matrix
    def get_mesh(self):
        return self.z_mesh
    cmd_BED_MESH_OUTPUT_help = "Retrieve interpolated grid of probed z-points"
    def cmd_BED_MESH_OUTPUT(self, gcmd):
        if gcmd.get_int('PGP', 0):
            # Print Generated Points instead of mesh
            self.bmc.print_generated_points(gcmd.respond_info)
        elif self.z_mesh is None:
            gcmd.respond_info("Bed has not been probed")
        else:
            self.z_mesh.print_probed_matrix(gcmd.respond_info)
            self.z_mesh.print_mesh(gcmd.respond_raw, self.horizontal_move_z)
    cmd_BED_MESH_MAP_help = "Serialize mesh and output to terminal"
    def cmd_BED_MESH_MAP(self, gcmd):
        if self.z_mesh is not None:
            params = self.z_mesh.get_mesh_params()
            outdict = {
                'mesh_min': (params['min_x'], params['min_y']),
                'mesh_max': (params['max_x'], params['max_y']),
                'z_positions': self.z_mesh.get_probed_matrix()}
            gcmd.respond_raw("mesh_map_output " + json.dumps(outdict))
        else:
            gcmd.respond_info("Bed has not been probed")
    cmd_BED_MESH_CLEAR_help = "Clear the Mesh so no z-adjustment is made"
    def cmd_BED_MESH_CLEAR(self, gcmd):
        self.set_mesh(None)
    cmd_BED_MESH_OFFSET_help = "Add X/Y offsets to the mesh lookup"
    def cmd_BED_MESH_OFFSET(self, gcmd):
        if self.z_mesh is not None:
            offsets = [None, None]
            for i, axis in enumerate(['X', 'Y']):
                offsets[i] = gcmd.get_float(axis, None)
            self.z_mesh.set_mesh_offsets(offsets)
            tool_offset = gcmd.get_float("ZFADE", None)
            if tool_offset is not None:
                self.tool_offset = tool_offset
            gcode_move = self.printer.lookup_object('gcode_move')
            gcode_move.reset_last_position()
        else:
            gcmd.respond_info("No mesh loaded to offset")
    def _handle_dump_request(self, web_request):
        eventtime = self.printer.get_reactor().monotonic()
        prb = self.printer.lookup_object("probe", None)
        th_sts = self.printer.lookup_object("toolhead").get_status(eventtime)
        result = {"current_mesh": {}, "profiles": self.pmgr.get_profiles()}
        if self.z_mesh is not None:
            result["current_mesh"] = {
                "name": self.z_mesh.get_profile_name(),
                "probed_matrix": self.z_mesh.get_probed_matrix(),
                "mesh_matrix": self.z_mesh.get_mesh_matrix(),
                "mesh_params": self.z_mesh.get_mesh_params()
            }
        mesh_args = web_request.get_dict("mesh_args", {})
        gcmd = None
        if mesh_args:
            gcmd = self.gcode.create_gcode_command("", "", mesh_args)
            with self.gcode.get_mutex():
                result["calibration"] = self.bmc.dump_calibration(gcmd)
        else:
            result["calibration"] = self.bmc.dump_calibration()
        offsets = [0, 0, 0] if prb is None else prb.get_offsets()
        result["probe_offsets"] = offsets
        result["axis_minimum"] = th_sts["axis_minimum"]
        result["axis_maximum"] = th_sts["axis_maximum"]
        web_request.send(result)


class ZrefMode:
    DISABLED = 0  # Zero reference disabled
    IN_MESH = 1   # Zero reference position within mesh
    PROBE = 2     # Zero refrennce position outside of mesh, probe needed


class BedMeshCalibrate:
    ALGOS = ['lagrange', 'bicubic']
    def __init__(self, config, bedmesh):
        self.printer = config.get_printer()
        self.orig_config = {'radius': None, 'origin': None}
        self.radius = self.origin = None
        self.mesh_min = self.mesh_max = (0., 0.)
        self.adaptive_margin = config.getfloat('adaptive_margin', 0.0)
        self.bedmesh = bedmesh
        self.mesh_config = collections.OrderedDict()
        self._init_mesh_config(config)
        self.probe_mgr = ProbeManager(
            config, self.orig_config, self.probe_finalize
        )
        try:
            self.probe_mgr.generate_points(
                self.mesh_config, self.mesh_min, self.mesh_max,
                self.radius, self.origin
            )
        except BedMeshError as e:
            raise config.error(str(e))
        self._profile_name = "default"
        self.gcode = self.printer.lookup_object('gcode')
        self.gcode.register_command(
            'BED_MESH_CALIBRATE', self.cmd_BED_MESH_CALIBRATE,
            desc=self.cmd_BED_MESH_CALIBRATE_help)
    def print_generated_points(self, print_func, truncate=False):
        x_offset = y_offset = 0.
        probe = self.printer.lookup_object('probe', None)
        if probe is not None:
            x_offset, y_offset = probe.get_offsets()[:2]
        print_func("bed_mesh: generated points\nIndex"
                   " |  Tool Adjusted  |   Probe")
        points = self.probe_mgr.get_base_points()
        for i, (x, y) in enumerate(points):
            if i >= 50 and truncate:
                end = len(points) - 1
                print_func("...points %d through %d truncated" % (i, end))
                break
            adj_pt = "(%.1f, %.1f)" % (x - x_offset, y - y_offset)
            mesh_pt = "(%.1f, %.1f)" % (x, y)
            print_func(
                "  %-4d| %-16s| %s" % (i, adj_pt, mesh_pt))
        zero_ref_pos = self.probe_mgr.get_zero_ref_pos()
        if zero_ref_pos is not None:
            print_func(
                "bed_mesh: zero_reference_position is (%.2f, %.2f)"
                % (zero_ref_pos[0], zero_ref_pos[1])
            )
        substitutes = self.probe_mgr.get_substitutes()
        if substitutes:
            print_func("bed_mesh: faulty region points")
            for i, v in substitutes.items():
                pt = points[i]
                print_func("%d (%.2f, %.2f), substituted points: %s"
                           % (i, pt[0], pt[1], repr(v)))
    def _init_mesh_config(self, config):
        mesh_cfg = self.mesh_config
        orig_cfg = self.orig_config
        self.radius = config.getfloat('mesh_radius', None, above=0.)
        if self.radius is not None:
            self.origin = config.getfloatlist('mesh_origin', (0., 0.), count=2)
            x_cnt = y_cnt = config.getint('round_probe_count', 5, minval=3)
            # round beds must have an odd number of points along each axis
            if not x_cnt & 1:
                raise config.error(
                    "bed_mesh: probe_count must be odd for round beds")
            # radius may have precision to .1mm
            self.radius = math.floor(self.radius * 10) / 10
            orig_cfg['radius'] = self.radius
            orig_cfg['origin'] = self.origin
            min_x = min_y = -self.radius
            max_x = max_y = self.radius
        else:
            # rectangular
            x_cnt, y_cnt = parse_config_pair(config, 'probe_count', 3, minval=3)
            min_x, min_y = config.getfloatlist('mesh_min', count=2)
            max_x, max_y = config.getfloatlist('mesh_max', count=2)
            if max_x <= min_x or max_y <= min_y:
                raise config.error('bed_mesh: invalid min/max points')
        orig_cfg['x_count'] = mesh_cfg['x_count'] = x_cnt
        orig_cfg['y_count'] = mesh_cfg['y_count'] = y_cnt
        orig_cfg['mesh_min'] = self.mesh_min = (min_x, min_y)
        orig_cfg['mesh_max'] = self.mesh_max = (max_x, max_y)

        pps = parse_config_pair(config, 'mesh_pps', 2, minval=0)
        orig_cfg['mesh_x_pps'] = mesh_cfg['mesh_x_pps'] = pps[0]
        orig_cfg['mesh_y_pps'] = mesh_cfg['mesh_y_pps'] = pps[1]
        orig_cfg['algo'] = mesh_cfg['algo'] = \
            config.get('algorithm', 'lagrange').strip().lower()
        orig_cfg['tension'] = mesh_cfg['tension'] = config.getfloat(
            'bicubic_tension', .2, minval=0., maxval=2.)
        self._verify_algorithm(config.error)
    def _verify_algorithm(self, error):
        params = self.mesh_config
        x_pps = params['mesh_x_pps']
        y_pps = params['mesh_y_pps']
        if params['algo'] not in self.ALGOS:
            raise error(
                "bed_mesh: Unknown algorithm <%s>"
                % (self.mesh_config['algo']))
        # Check the algorithm against the current configuration
        max_probe_cnt = max(params['x_count'], params['y_count'])
        min_probe_cnt = min(params['x_count'], params['y_count'])
        if max(x_pps, y_pps) == 0:
            # Interpolation disabled
            self.mesh_config['algo'] = 'direct'
        elif params['algo'] == 'lagrange' and max_probe_cnt > 6:
            # Lagrange interpolation tends to oscillate when using more
            # than 6 samples
            raise error(
                "bed_mesh: cannot exceed a probe_count of 6 when using "
                "lagrange interpolation. Configured Probe Count: %d, %d" %
                (self.mesh_config['x_count'], self.mesh_config['y_count']))
        elif params['algo'] == 'bicubic' and min_probe_cnt < 4:
            if max_probe_cnt > 6:
                raise error(
                    "bed_mesh: invalid probe_count option when using bicubic "
                    "interpolation.  Combination of 3 points on one axis with "
                    "more than 6 on another is not permitted. "
                    "Configured Probe Count: %d, %d" %
                    (self.mesh_config['x_count'], self.mesh_config['y_count']))
            else:
                logging.info(
                    "bed_mesh: bicubic interpolation with a probe_count of "
                    "less than 4 points detected.  Forcing lagrange "
                    "interpolation. Configured Probe Count: %d, %d" %
                    (self.mesh_config['x_count'], self.mesh_config['y_count']))
                params['algo'] = 'lagrange'
    def set_adaptive_mesh(self, gcmd):
        if not gcmd.get_int('ADAPTIVE', 0):
            return False
        exclude_objects = self.printer.lookup_object("exclude_object", None)
        if exclude_objects is None:
            gcmd.respond_info("Exclude objects not enabled. Using full mesh...")
            return False
        objects = exclude_objects.get_status().get("objects", [])
        if not objects:
            return False
        margin = gcmd.get_float('ADAPTIVE_MARGIN', self.adaptive_margin)

        # List all exclude_object points by axis and iterate over
        # all polygon points, and pick the min and max or each axis
        list_of_xs = []
        list_of_ys = []
        gcmd.respond_info("Found %s objects" % (len(objects)))
        for obj in objects:
            for point in obj["polygon"]:
                list_of_xs.append(point[0])
                list_of_ys.append(point[1])

        # Define bounds of adaptive mesh area
        mesh_min = [min(list_of_xs), min(list_of_ys)]
        mesh_max = [max(list_of_xs), max(list_of_ys)]
        adjusted_mesh_min = [x - margin for x in mesh_min]
        adjusted_mesh_max = [x + margin for x in mesh_max]

        # Force margin to respect original mesh bounds
        adjusted_mesh_min[0] = max(adjusted_mesh_min[0],
                                   self.orig_config["mesh_min"][0])
        adjusted_mesh_min[1] = max(adjusted_mesh_min[1],
                                   self.orig_config["mesh_min"][1])
        adjusted_mesh_max[0] = min(adjusted_mesh_max[0],
                                   self.orig_config["mesh_max"][0])
        adjusted_mesh_max[1] = min(adjusted_mesh_max[1],
                                   self.orig_config["mesh_max"][1])

        adjusted_mesh_size = (adjusted_mesh_max[0] - adjusted_mesh_min[0],
                              adjusted_mesh_max[1] - adjusted_mesh_min[1])

        # Compute a ratio between the adapted and original sizes
        ratio = (adjusted_mesh_size[0] /
                 (self.orig_config["mesh_max"][0] -
                  self.orig_config["mesh_min"][0]),
                 adjusted_mesh_size[1] /
                 (self.orig_config["mesh_max"][1] -
                  self.orig_config["mesh_min"][1]))

        gcmd.respond_info("Original mesh bounds: (%s,%s)" %
                          (self.orig_config["mesh_min"],
                           self.orig_config["mesh_max"]))
        gcmd.respond_info("Original probe count: (%s,%s)" %
                          (self.mesh_config["x_count"],
                           self.mesh_config["y_count"]))
        gcmd.respond_info("Adapted mesh bounds: (%s,%s)" %
                          (adjusted_mesh_min, adjusted_mesh_max))
        gcmd.respond_info("Ratio: (%s, %s)" % ratio)

        new_x_probe_count = int(
            math.ceil(self.mesh_config["x_count"] * ratio[0]))
        new_y_probe_count = int(
        math.ceil(self.mesh_config["y_count"] * ratio[1]))

        # There is one case, where we may have to adjust the probe counts:
        # axis0 < 4 and axis1 > 6 (see _verify_algorithm).
        min_num_of_probes = 3
        if max(new_x_probe_count, new_y_probe_count) > 6 and \
           min(new_x_probe_count, new_y_probe_count) < 4:
            min_num_of_probes = 4

        new_x_probe_count = max(min_num_of_probes, new_x_probe_count)
        new_y_probe_count = max(min_num_of_probes, new_y_probe_count)

        gcmd.respond_info("Adapted probe count: (%s,%s)" %
                          (new_x_probe_count, new_y_probe_count))

        # If the adapted mesh size is too small, adjust it to something
        # useful.
        adjusted_mesh_size = (max(adjusted_mesh_size[0], new_x_probe_count),
                              max(adjusted_mesh_size[1], new_y_probe_count))

        if self.radius is not None:
            adapted_radius = math.sqrt((adjusted_mesh_size[0] ** 2) +
                                       (adjusted_mesh_size[1] ** 2)) / 2
            adapted_origin = (adjusted_mesh_min[0] +
                              (adjusted_mesh_size[0] / 2),
                              adjusted_mesh_min[1] +
                              (adjusted_mesh_size[1] / 2))
            to_adapted_origin = math.sqrt(adapted_origin[0]**2 +
                                          adapted_origin[1]**2)
            # If the adapted mesh size is smaller than the default/full
            # mesh, adjust the parameters. Otherwise, just do the full mesh.
            if adapted_radius + to_adapted_origin < self.radius:
                self.radius = adapted_radius
                self.origin = adapted_origin
                self.mesh_min = (-self.radius, -self.radius)
                self.mesh_max = (self.radius, self.radius)
                new_probe_count = max(new_x_probe_count, new_y_probe_count)
                # Adaptive meshes require odd number of points
                new_probe_count += 1 - (new_probe_count % 2)
                self.mesh_config["x_count"] = self.mesh_config["y_count"] = \
                        new_probe_count
        else:
            self.mesh_min = adjusted_mesh_min
            self.mesh_max = adjusted_mesh_max
            self.mesh_config["x_count"] = new_x_probe_count
            self.mesh_config["y_count"] = new_y_probe_count
        self._profile_name = None
        return True
    def update_config(self, gcmd):
        # reset default configuration
        self.radius = self.orig_config['radius']
        self.origin = self.orig_config['origin']
        self.mesh_min = self.orig_config['mesh_min']
        self.mesh_max = self.orig_config['mesh_max']
        for key in list(self.mesh_config.keys()):
            self.mesh_config[key] = self.orig_config[key]

        params = gcmd.get_command_parameters()
        need_cfg_update = False
        if self.radius is not None:
            if "MESH_RADIUS" in params:
                self.radius = gcmd.get_float("MESH_RADIUS")
                self.radius = math.floor(self.radius * 10) / 10
                self.mesh_min = (-self.radius, -self.radius)
                self.mesh_max = (self.radius, self.radius)
                need_cfg_update = True
            if "MESH_ORIGIN" in params:
                self.origin = parse_gcmd_coord(gcmd, 'MESH_ORIGIN')
                need_cfg_update = True
            if "ROUND_PROBE_COUNT" in params:
                cnt = gcmd.get_int('ROUND_PROBE_COUNT', minval=3)
                self.mesh_config['x_count'] = cnt
                self.mesh_config['y_count'] = cnt
                need_cfg_update = True
        else:
            if "MESH_MIN" in params:
                self.mesh_min = parse_gcmd_coord(gcmd, 'MESH_MIN')
                need_cfg_update = True
            if "MESH_MAX" in params:
                self.mesh_max = parse_gcmd_coord(gcmd, 'MESH_MAX')
                need_cfg_update = True
            if "PROBE_COUNT" in params:
                x_cnt, y_cnt = parse_gcmd_pair(gcmd, 'PROBE_COUNT', minval=3)
                self.mesh_config['x_count'] = x_cnt
                self.mesh_config['y_count'] = y_cnt
                need_cfg_update = True

        if "MESH_PPS" in params:
            xpps, ypps = parse_gcmd_pair(gcmd, 'MESH_PPS', minval=0)
            self.mesh_config['mesh_x_pps'] = xpps
            self.mesh_config['mesh_y_pps'] = ypps
            need_cfg_update = True

        if "ALGORITHM" in params:
            self.mesh_config['algo'] = gcmd.get('ALGORITHM').strip().lower()
            need_cfg_update = True

        need_cfg_update |= self.set_adaptive_mesh(gcmd)
        probe_method = gcmd.get("METHOD", "automatic")

        if need_cfg_update:
            self._verify_algorithm(gcmd.error)
            self.probe_mgr.generate_points(
                self.mesh_config, self.mesh_min, self.mesh_max,
                self.radius, self.origin, probe_method
            )
            msg = "\n".join(["%s: %s" % (k, v)
                             for k, v in self.mesh_config.items()])
            logging.info("Updated Mesh Configuration:\n" + msg)
        else:
            self.probe_mgr.generate_points(
                self.mesh_config, self.mesh_min, self.mesh_max,
                self.radius, self.origin, probe_method
            )
    def dump_calibration(self, gcmd=None):
        if gcmd is not None and gcmd.get_command_parameters():
            self.update_config(gcmd)
        cfg = dict(self.mesh_config)
        cfg["mesh_min"] = self.mesh_min
        cfg["mesh_max"] = self.mesh_max
        cfg["origin"] = self.origin
        cfg["radius"] = self.radius
        return {
            "points": self.probe_mgr.get_base_points(),
            "config": cfg,
            "probe_path": self.probe_mgr.get_std_path(),
            "rapid_path": list(self.probe_mgr.iter_rapid_path())
        }
    cmd_BED_MESH_CALIBRATE_help = "Perform Mesh Bed Leveling"
    def cmd_BED_MESH_CALIBRATE(self, gcmd):
        self._profile_name = gcmd.get('PROFILE', "default")
        if not self._profile_name.strip():
            raise gcmd.error("Value for parameter 'PROFILE' must be specified")
        self.bedmesh.set_mesh(None)
        try:
            self.update_config(gcmd)
        except BedMeshError as e:
            raise gcmd.error(str(e))
        self.probe_mgr.start_probe(gcmd)
    def probe_finalize(self, offsets, positions):
        z_offset = offsets[2]
        positions = [[round(p[0], 2), round(p[1], 2), p[2]]
                     for p in positions]
        if self.probe_mgr.get_zero_ref_mode() == ZrefMode.PROBE:
            ref_pos = positions.pop()
            logging.info(
                "bed_mesh: z-offset replaced with probed z value at "
                "position (%.2f, %.2f, %.6f)"
                % (ref_pos[0], ref_pos[1], ref_pos[2])
            )
            z_offset = ref_pos[2]
        base_points = self.probe_mgr.get_base_points()
        params = dict(self.mesh_config)
        params['min_x'] = min(base_points, key=lambda p: p[0])[0]
        params['max_x'] = max(base_points, key=lambda p: p[0])[0]
        params['min_y'] = min(base_points, key=lambda p: p[1])[1]
        params['max_y'] = max(base_points, key=lambda p: p[1])[1]
        x_cnt = params['x_count']
        y_cnt = params['y_count']

        substitutes = self.probe_mgr.get_substitutes()
        probed_pts = positions
        if substitutes:
            # Replace substituted points with the original generated
            # point.  Its Z Value is the average probed Z of the
            # substituted points.
            corrected_pts = []
            idx_offset = 0
            start_idx = 0
            for i, pts in substitutes.items():
                fpt = [p - o for p, o in zip(base_points[i], offsets[:2])]
                # offset the index to account for additional samples
                idx = i + idx_offset
                # Add "normal" points
                corrected_pts.extend(positions[start_idx:idx])
                avg_z = sum([p[2] for p in positions[idx:idx+len(pts)]]) \
                    / len(pts)
                idx_offset += len(pts) - 1
                start_idx = idx + len(pts)
                fpt.append(avg_z)
                logging.info(
                    "bed_mesh: Replacing value at faulty index %d"
                    " (%.4f, %.4f): avg value = %.6f, avg w/ z_offset = %.6f"
                    % (i, fpt[0], fpt[1], avg_z, avg_z - z_offset))
                corrected_pts.append(fpt)
            corrected_pts.extend(positions[start_idx:])
            positions = corrected_pts

        # validate length of result
        if len(base_points) != len(positions):
            self._dump_points(probed_pts, positions, offsets)
            raise self.gcode.error(
                "bed_mesh: invalid position list size, "
                "generated count: %d, probed count: %d"
                % (len(base_points), len(positions))
            )

        probed_matrix = []
        row = []
        prev_pos = base_points[0]
        for pos, result in zip(base_points, positions):
            offset_pos = [p - o for p, o in zip(pos, offsets[:2])]
            if (
                not isclose(offset_pos[0], result[0], abs_tol=.5) or
                not isclose(offset_pos[1], result[1], abs_tol=.5)
            ):
                logging.info(
                    "bed_mesh: point deviation > .5mm: orig pt = (%.2f, %.2f)"
                    ", probed pt = (%.2f, %.2f)"
                    % (offset_pos[0], offset_pos[1], result[0], result[1])
                )
            z_pos = result[2] - z_offset
            if not isclose(pos[1], prev_pos[1], abs_tol=.1):
                # y has changed, append row and start new
                probed_matrix.append(row)
                row = []
            if pos[0] > prev_pos[0]:
                # probed in the positive direction
                row.append(z_pos)
            else:
                # probed in the negative direction
                row.insert(0, z_pos)
            prev_pos = pos
        # append last row
        probed_matrix.append(row)

        # make sure the y-axis is the correct length
        if len(probed_matrix) != y_cnt:
            raise self.gcode.error(
                ("bed_mesh: Invalid y-axis table length\n"
                 "Probed table length: %d Probed Table:\n%s") %
                (len(probed_matrix), str(probed_matrix)))

        if self.radius is not None:
            # round bed, extrapolate probed values to create a square mesh
            for row in probed_matrix:
                row_size = len(row)
                if not row_size & 1:
                    # an even number of points in a row shouldn't be possible
                    msg = "bed_mesh: incorrect number of points sampled on X\n"
                    msg += "Probed Table:\n"
                    msg += str(probed_matrix)
                    raise self.gcode.error(msg)
                buf_cnt = (x_cnt - row_size) // 2
                if buf_cnt == 0:
                    continue
                left_buffer = [row[0]] * buf_cnt
                right_buffer = [row[row_size-1]] * buf_cnt
                row[0:0] = left_buffer
                row.extend(right_buffer)

        #  make sure that the x-axis is the correct length
        for row in probed_matrix:
            if len(row) != x_cnt:
                raise self.gcode.error(
                    ("bed_mesh: invalid x-axis table length\n"
                        "Probed table length: %d Probed Table:\n%s") %
                    (len(probed_matrix), str(probed_matrix)))

        z_mesh = ZMesh(params, self._profile_name)
        try:
            z_mesh.build_mesh(probed_matrix)
        except BedMeshError as e:
            raise self.gcode.error(str(e))
        if self.probe_mgr.get_zero_ref_mode() == ZrefMode.IN_MESH:
            # The reference can be anywhere in the mesh, therefore
            # it is necessary to set the reference after the initial mesh
            # is generated to lookup the correct z value.
            zero_ref_pos = self.probe_mgr.get_zero_ref_pos()
            z_mesh.set_zero_reference(*zero_ref_pos)
        self.bedmesh.set_mesh(z_mesh)
        self.gcode.respond_info("Mesh Bed Leveling Complete")
        if self._profile_name is not None:
            self.bedmesh.save_profile(self._profile_name)
    def _dump_points(self, probed_pts, corrected_pts, offsets):
        # logs generated points with offset applied, points received
        # from the finalize callback, and the list of corrected points
        points = self.probe_mgr.get_base_points()
        max_len = max([len(points), len(probed_pts), len(corrected_pts)])
        logging.info(
            "bed_mesh: calibration point dump\nIndex | %-17s| %-25s|"
            " Corrected Point" % ("Generated Point", "Probed Point"))
        for i in list(range(max_len)):
            gen_pt = probed_pt = corr_pt = ""
            if i < len(points):
                off_pt = [p - o for p, o in zip(points[i], offsets[:2])]
                gen_pt = "(%.2f, %.2f)" % tuple(off_pt)
            if i < len(probed_pts):
                probed_pt = "(%.2f, %.2f, %.4f)" % tuple(probed_pts[i])
            if i < len(corrected_pts):
                corr_pt = "(%.2f, %.2f, %.4f)" % tuple(corrected_pts[i])
            logging.info(
                "  %-4d| %-17s| %-25s| %s" % (i, gen_pt, probed_pt, corr_pt))

class ProbeManager:
    def __init__(self, config, orig_config, finalize_cb):
        self.printer = config.get_printer()
        self.cfg_overshoot = config.getfloat("scan_overshoot", 0, minval=1.)
        self.orig_config = orig_config
        self.faulty_regions = []
        self.overshoot = self.cfg_overshoot
        self.zero_ref_pos = config.getfloatlist(
            "zero_reference_position", None, count=2
        )
        self.zref_mode = ZrefMode.DISABLED
        self.base_points = []
        self.substitutes = collections.OrderedDict()
        self.is_round = orig_config["radius"] is not None
        self.probe_helper = probe.ProbePointsHelper(config, finalize_cb, [])
        self.probe_helper.use_xy_offsets(True)
        self.rapid_scan_helper = RapidScanHelper(config, self, finalize_cb)
        self._init_faulty_regions(config)

    def _init_faulty_regions(self, config):
        for i in list(range(1, 100, 1)):
            start = config.getfloatlist("faulty_region_%d_min" % (i,), None,
                                        count=2)
            if start is None:
                break
            end = config.getfloatlist("faulty_region_%d_max" % (i,), count=2)
            # Validate the corners.  If necessary reorganize them.
            # c1 = min point, c3 = max point
            #  c4 ---- c3
            #  |        |
            #  c1 ---- c2
            c1 = [min([s, e]) for s, e in zip(start, end)]
            c3 = [max([s, e]) for s, e in zip(start, end)]
            c2 = [c1[0], c3[1]]
            c4 = [c3[0], c1[1]]
            # Check for overlapping regions
            for j, (prev_c1, prev_c3) in enumerate(self.faulty_regions):
                prev_c2 = [prev_c1[0], prev_c3[1]]
                prev_c4 = [prev_c3[0], prev_c1[1]]
                # Validate that no existing corner is within the new region
                for coord in [prev_c1, prev_c2, prev_c3, prev_c4]:
                    if within(coord, c1, c3):
                        raise config.error(
                            "bed_mesh: Existing faulty_region_%d %s overlaps "
                            "added faulty_region_%d %s"
                            % (j+1, repr([prev_c1, prev_c3]),
                               i, repr([c1, c3])))
                # Validate that no new corner is within an existing region
                for coord in [c1, c2, c3, c4]:
                    if within(coord, prev_c1, prev_c3):
                        raise config.error(
                            "bed_mesh: Added faulty_region_%d %s overlaps "
                            "existing faulty_region_%d %s"
                            % (i, repr([c1, c3]),
                               j+1, repr([prev_c1, prev_c3])))
            self.faulty_regions.append((c1, c3))

    def start_probe(self, gcmd):
        method = gcmd.get("METHOD", "automatic").lower()
        can_scan = False
        pprobe = self.printer.lookup_object("probe", None)
        if pprobe is not None:
            probe_name = pprobe.get_status(None).get("name", "")
            can_scan = probe_name.startswith("probe_eddy_current")
        if method == "rapid_scan" and can_scan:
            self.rapid_scan_helper.perform_rapid_scan(gcmd)
        else:
            self.probe_helper.start_probe(gcmd)

    def get_zero_ref_pos(self):
        return self.zero_ref_pos

    def get_zero_ref_mode(self):
        return self.zref_mode

    def get_substitutes(self):
        return self.substitutes

    def generate_points(
        self, mesh_config, mesh_min, mesh_max, radius, origin,
        probe_method="automatic"
    ):
        x_cnt = mesh_config['x_count']
        y_cnt = mesh_config['y_count']
        min_x, min_y = mesh_min
        max_x, max_y = mesh_max
        x_dist = (max_x - min_x) / (x_cnt - 1)
        y_dist = (max_y - min_y) / (y_cnt - 1)
        # floor distances down to next hundredth
        x_dist = math.floor(x_dist * 100) / 100
        y_dist = math.floor(y_dist * 100) / 100
        if x_dist < 1. or y_dist < 1.:
            raise BedMeshError("bed_mesh: min/max points too close together")

        if radius is not None:
            # round bed, min/max needs to be recalculated
            y_dist = x_dist
            new_r = (x_cnt // 2) * x_dist
            min_x = min_y = -new_r
            max_x = max_y = new_r
        else:
            # rectangular bed, only re-calc max_x
            max_x = min_x + x_dist * (x_cnt - 1)
        pos_y = min_y
        points = []
        for i in range(y_cnt):
            for j in range(x_cnt):
                if not i % 2:
                    # move in positive direction
                    pos_x = min_x + j * x_dist
                else:
                    # move in negative direction
                    pos_x = max_x - j * x_dist
                if radius is None:
                    # rectangular bed, append
                    points.append((pos_x, pos_y))
                else:
                    # round bed, check distance from origin
                    dist_from_origin = math.sqrt(pos_x*pos_x + pos_y*pos_y)
                    if dist_from_origin <= radius:
                        points.append(
                            (origin[0] + pos_x, origin[1] + pos_y))
            pos_y += y_dist
        if self.zero_ref_pos is None or probe_method == "manual":
            # Zero Reference Disabled
            self.zref_mode = ZrefMode.DISABLED
        elif within(self.zero_ref_pos, mesh_min, mesh_max):
            # Zero Reference position within mesh
            self.zref_mode = ZrefMode.IN_MESH
        else:
            # Zero Reference position outside of mesh
            self.zref_mode = ZrefMode.PROBE
        self.base_points = points
        self.substitutes.clear()
        # adjust overshoot
        og_min_x = self.orig_config["mesh_min"][0]
        og_max_x = self.orig_config["mesh_max"][0]
        add_ovs = min(max(0, min_x - og_min_x), max(0, og_max_x - max_x))
        self.overshoot = self.cfg_overshoot + math.floor(add_ovs)
        min_pt, max_pt = (min_x, min_y), (max_x, max_y)
        self._process_faulty_regions(min_pt, max_pt, radius)
        self.probe_helper.update_probe_points(self.get_std_path(), 3)

    def _process_faulty_regions(self, min_pt, max_pt, radius):
        if not self.faulty_regions:
            return
        # Cannot probe a reference within a faulty region
        if self.zref_mode == ZrefMode.PROBE:
            for min_c, max_c in self.faulty_regions:
                if within(self.zero_ref_pos, min_c, max_c):
                    opt = "zero_reference_position"
                    raise BedMeshError(
                        "bed_mesh: Cannot probe zero reference position at "
                        "(%.2f, %.2f) as it is located within a faulty region."
                        " Check the value for option '%s'"
                        % (self.zero_ref_pos[0], self.zero_ref_pos[1], opt,)
                    )
        # Check to see if any points fall within faulty regions
        last_y = self.base_points[0][1]
        is_reversed = False
        for i, coord in enumerate(self.base_points):
            if not isclose(coord[1], last_y):
                is_reversed = not is_reversed
            last_y = coord[1]
            adj_coords = []
            for min_c, max_c in self.faulty_regions:
                if within(coord, min_c, max_c, tol=.00001):
                    # Point lies within a faulty region
                    adj_coords = [
                        (min_c[0], coord[1]), (coord[0], min_c[1]),
                        (coord[0], max_c[1]), (max_c[0], coord[1])]
                    if is_reversed:
                        # Swap first and last points for zig-zag pattern
                        first = adj_coords[0]
                        adj_coords[0] = adj_coords[-1]
                        adj_coords[-1] = first
                    break
            if not adj_coords:
                # coord is not located within a faulty region
                continue
            valid_coords = []
            for ac in adj_coords:
                # make sure that coordinates are within the mesh boundary
                if radius is None:
                    if within(ac, min_pt, max_pt, .000001):
                        valid_coords.append(ac)
                else:
                    dist_from_origin = math.sqrt(ac[0]*ac[0] + ac[1]*ac[1])
                    if dist_from_origin <= radius:
                        valid_coords.append(ac)
            if not valid_coords:
                raise BedMeshError(
                    "bed_mesh: Unable to generate coordinates"
                    " for faulty region at index: %d" % (i)
                )
            self.substitutes[i] = valid_coords

    def get_base_points(self):
        return self.base_points

    def get_std_path(self):
        path = []
        for idx, pt in enumerate(self.base_points):
            if idx in self.substitutes:
                for sub_pt in self.substitutes[idx]:
                    path.append(sub_pt)
            else:
                path.append(pt)
        if self.zref_mode == ZrefMode.PROBE:
            path.append(self.zero_ref_pos)
        return path

    def iter_rapid_path(self):
        ascnd_x = True
        last_base_pt = last_mv_pt = self.base_points[0]
        # Generate initial move point
        if self.overshoot:
            overshoot = min(8, self.overshoot)
            last_mv_pt = (last_base_pt[0] - overshoot, last_base_pt[1])
            yield last_mv_pt, False
        for idx, pt in enumerate(self.base_points):
            # increasing Y indicates direction change
            dir_change = not isclose(pt[1], last_base_pt[1], abs_tol=1e-6)
            if idx in self.substitutes:
                fp_gen = self._gen_faulty_path(
                    last_mv_pt, idx, ascnd_x, dir_change
                )
                for sub_pt, is_smp in fp_gen:
                    yield sub_pt, is_smp
                    last_mv_pt = sub_pt
            else:
                if dir_change:
                    for dpt in self._gen_dir_change(last_mv_pt, pt, ascnd_x):
                        yield dpt, False
                yield pt, True
                last_mv_pt = pt
            last_base_pt = pt
            ascnd_x ^= dir_change
        if self.zref_mode == ZrefMode.PROBE:
            if self.overshoot:
                ovs = min(4, self.overshoot)
                ovs = ovs if ascnd_x else -ovs
                yield (last_mv_pt[0] + ovs, last_mv_pt[1]), False
            yield self.zero_ref_pos, True

    def _gen_faulty_path(self, last_pt, idx, ascnd_x, dir_change):
        subs = self.substitutes[idx]
        sub_cnt = len(subs)
        if dir_change:
            for dpt in self._gen_dir_change(last_pt, subs[0], ascnd_x):
                yield dpt, False
        if self.is_round:
            # No faulty region path handling for round beds
            for pt in subs:
                yield pt, True
            return
        # Check to see if this is the first corner
        first_corner = False
        sorted_sub_idx = sorted(self.substitutes.keys())
        if sub_cnt == 2 and idx < len(sorted_sub_idx):
            first_corner = sorted_sub_idx[idx] == idx
        yield subs[0], True
        if sub_cnt == 1:
            return
        last_pt, next_pt = subs[:2]
        if sub_cnt == 2:
            if first_corner or dir_change:
                # horizontal move first
                yield (next_pt[0], last_pt[1]), False
            else:
                yield (last_pt[0], next_pt[1]), False
            yield next_pt, True
        elif sub_cnt >= 3:
            if dir_change:
                # first move should be a vertical switch up.  If overshoot
                # is available, simulate another direction change.  Otherwise
                # move inward 2 mm, then up through the faulty region.
                if self.overshoot:
                    for dpt in self._gen_dir_change(last_pt, next_pt, ascnd_x):
                        yield dpt, False
                else:
                    shift = -2 if ascnd_x else 2
                    yield (last_pt[0] + shift, last_pt[1]), False
                    yield (last_pt[0] + shift, next_pt[1]), False
                yield next_pt, True
                last_pt, next_pt = subs[1:3]
            else:
                # vertical move
                yield (last_pt[0], next_pt[1]), False
                yield next_pt, True
                last_pt, next_pt = subs[1:3]
                if sub_cnt == 4:
                    # Vertical switch up within faulty region
                    shift = 2 if ascnd_x else -2
                    yield (last_pt[0] + shift, last_pt[1]), False
                    yield (next_pt[0] - shift, next_pt[1]), False
                    yield next_pt, True
                    last_pt, next_pt = subs[2:4]
            # horizontal move before final point
            yield (next_pt[0], last_pt[1]), False
            yield next_pt, True

    def _gen_dir_change(self, last_pt, next_pt, ascnd_x):
        if not self.overshoot:
            return
        # overshoot X beyond the outer point
        xdir = 1 if ascnd_x else -1
        overshoot = 2. if self.overshoot >= 3. else self.overshoot
        ovr_pt = (last_pt[0] + overshoot * xdir, last_pt[1])
        yield ovr_pt
        if self.overshoot < 3.:
            # No room to generate an arc, move up to next y
            yield (next_pt[0] + overshoot * xdir, next_pt[1])
        else:
            # generate arc
            STEP_ANGLE = 3
            START_ANGLE = 270
            ydiff = abs(next_pt[1] - last_pt[1])
            xdiff = abs(next_pt[0] - last_pt[0])
            max_radius = min(self.overshoot - 2, 8)
            radius = min(ydiff / 2, max_radius)
            origin = [ovr_pt[0], last_pt[1] + radius]
            next_origin_y = next_pt[1] - radius
            # determine angle
            if xdiff < .01:
                # Move is aligned on the x-axis
                angle = 90
                if next_origin_y - origin[1] < .05:
                    # The move can be completed in a single arc
                    angle = 180
            else:
                angle = int(math.degrees(math.atan(ydiff / xdiff)))
                if (
                    (ascnd_x and next_pt[0] < last_pt[0]) or
                    (not ascnd_x and next_pt[0] > last_pt[0])
                ):
                    angle = 180 - angle
            count = int(angle // STEP_ANGLE)
            # Gen first arc
            step = STEP_ANGLE * xdir
            start = START_ANGLE + step
            for arc_pt in self._gen_arc(origin, radius, start, step, count):
                yield arc_pt
            if angle == 180:
                # arc complete
                return
            # generate next arc
            origin = [next_pt[0] + overshoot * xdir, next_origin_y]
            # start at the angle where the last arc finished
            start = START_ANGLE + count * step
            # recalculate the count to make sure we generate a full 180
            # degrees.  Add a step for the repeated connecting angle
            count = 61 - count
            for arc_pt in self._gen_arc(origin, radius, start, step, count):
                yield arc_pt

    def _gen_arc(self, origin, radius, start, step, count):
        end = start + step * count
        # create a segent for every 3 degrees of travel
        for angle in range(start, end, step):
            rad = math.radians(angle % 360)
            opp = math.sin(rad) * radius
            adj = math.cos(rad) * radius
            yield (origin[0] + adj, origin[1] + opp)


MAX_HIT_DIST = 2.
MM_WIN_SPEED = 125

class RapidScanHelper:
    def __init__(self, config, probe_mgr, finalize_cb):
        self.printer = config.get_printer()
        self.probe_manager = probe_mgr
        self.speed = config.getfloat("speed", 50., above=0.)
        self.scan_height = config.getfloat("horizontal_move_z", 5.)
        self.finalize_callback = finalize_cb

    def perform_rapid_scan(self, gcmd):
        speed = gcmd.get_float("SCAN_SPEED", self.speed)
        scan_height = gcmd.get_float("HORIZONTAL_MOVE_Z", self.scan_height)
        gcmd.respond_info(
            "Beginning rapid surface scan at height %.2f..." % (scan_height)
        )
        pprobe = self.printer.lookup_object("probe")
        toolhead = self.printer.lookup_object("toolhead")
        # Calculate time window around which a sample is valid.  Current
        # assumption is anything within 2mm is usable, so:
        # window = 2 / max_speed
        #
        # TODO: validate maximum speed allowed based on sample rate of probe
        # Scale the hit distance window for speeds lower than 125mm/s.  The
        # lower the speed the less the window shrinks.
        scale = max(0, 1 - speed / MM_WIN_SPEED) + 1
        hit_dist = min(MAX_HIT_DIST, scale * speed / MM_WIN_SPEED)
        half_window = hit_dist / speed
        gcmd.respond_info(
            "Sample hit distance +/- %.4fmm, time window +/- ms %.4f"
            % (hit_dist, half_window * 1000)
        )
        gcmd_params = gcmd.get_command_parameters()
        gcmd_params["SAMPLE_TIME"] = half_window * 2
        self._raise_tool(gcmd, scan_height)
        probe_session = pprobe.start_probe_session(gcmd)
        offsets = pprobe.get_offsets()
        initial_move = True
        for pos, is_probe_pt in self.probe_manager.iter_rapid_path():
            pos = self._apply_offsets(pos[:2], offsets)
            toolhead.manual_move(pos, speed)
            if initial_move:
                initial_move = False
                self._move_to_scan_height(gcmd, scan_height)
            if is_probe_pt:
                probe_session.run_probe(gcmd)
        results = probe_session.pull_probed_results()
        toolhead.get_last_move_time()
        self.finalize_callback(offsets, results)
        probe_session.end_probe_session()

    def _raise_tool(self, gcmd, scan_height):
        # If the nozzle is below scan height raise the tool
        toolhead = self.printer.lookup_object("toolhead")
        pprobe = self.printer.lookup_object("probe")
        cur_pos = toolhead.get_position()
        if cur_pos[2] >= scan_height:
            return
        pparams = pprobe.get_probe_params(gcmd)
        lift_speed = pparams["lift_speed"]
        cur_pos[2] = self.scan_height + .5
        toolhead.manual_move(cur_pos, lift_speed)

    def _move_to_scan_height(self, gcmd, scan_height):
        time_window = gcmd.get_float("SAMPLE_TIME")
        toolhead = self.printer.lookup_object("toolhead")
        pprobe = self.printer.lookup_object("probe")
        cur_pos = toolhead.get_position()
        pparams = pprobe.get_probe_params(gcmd)
        lift_speed = pparams["lift_speed"]
        probe_speed = pparams["probe_speed"]
        cur_pos[2] = scan_height + .5
        toolhead.manual_move(cur_pos, lift_speed)
        cur_pos[2] = scan_height
        toolhead.manual_move(cur_pos, probe_speed)
        toolhead.dwell(time_window / 2 + .01)

    def _apply_offsets(self, point, offsets):
        return [(pos - ofs) for pos, ofs in zip(point, offsets)]


class MoveSplitter:
    def __init__(self, config, gcode):
        self.split_delta_z = config.getfloat(
            'split_delta_z', .025, minval=0.01)
        self.move_check_distance = config.getfloat(
            'move_check_distance', 5., minval=3.)
        self.z_mesh = None
        self.fade_offset = 0.
        self.gcode = gcode
    def initialize(self, mesh, fade_offset):
        self.z_mesh = mesh
        self.fade_offset = fade_offset
    def build_move(self, prev_pos, next_pos, factor):
        self.prev_pos = tuple(prev_pos)
        self.next_pos = tuple(next_pos)
        self.current_pos = list(prev_pos)
        self.z_factor = factor
        self.z_offset = self._calc_z_offset(prev_pos)
        self.traverse_complete = False
        self.distance_checked = 0.
        axes_d = [np - pp for np, pp in zip(self.next_pos, self.prev_pos)]
        self.total_move_length = math.sqrt(sum([d*d for d in axes_d[:3]]))
        self.axis_move = [not isclose(d, 0., abs_tol=1e-10) for d in axes_d]
    def _calc_z_offset(self, pos):
        z = self.z_mesh.calc_z(pos[0], pos[1])
        offset = self.fade_offset
        return self.z_factor * (z - offset) + offset
    def _set_next_move(self, distance_from_prev):
        t = distance_from_prev / self.total_move_length
        if t > 1. or t < 0.:
            raise self.gcode.error(
                "bed_mesh: Slice distance is negative "
                "or greater than entire move length")
        for i in range(len(self.next_pos)):
            if self.axis_move[i]:
                self.current_pos[i] = lerp(
                    t, self.prev_pos[i], self.next_pos[i])
    def split(self):
        if not self.traverse_complete:
            if self.axis_move[0] or self.axis_move[1]:
                # X and/or Y axis move, traverse if necessary
                while self.distance_checked + self.move_check_distance \
                        < self.total_move_length:
                    self.distance_checked += self.move_check_distance
                    self._set_next_move(self.distance_checked)
                    next_z = self._calc_z_offset(self.current_pos)
                    if abs(next_z - self.z_offset) >= self.split_delta_z:
                        self.z_offset = next_z
                        newpos = list(self.current_pos)
                        newpos[2] += self.z_offset
                        return newpos
            # end of move reached
            self.current_pos[:] = self.next_pos
            self.z_offset = self._calc_z_offset(self.current_pos)
            # Its okay to add Z-Offset to the final move, since it will not be
            # used again.
            self.current_pos[2] += self.z_offset
            self.traverse_complete = True
            return self.current_pos
        else:
            # Traverse complete
            return None


class ZMesh:
    def __init__(self, params, name):
        self.profile_name = name or "adaptive-%X" % (id(self),)
        self.probed_matrix = self.mesh_matrix = None
        self.mesh_params = params
        self.mesh_offsets = [0., 0.]
        logging.debug('bed_mesh: probe/mesh parameters:')
        for key, value in self.mesh_params.items():
            logging.debug("%s :  %s" % (key, value))
        self.mesh_x_min = params['min_x']
        self.mesh_x_max = params['max_x']
        self.mesh_y_min = params['min_y']
        self.mesh_y_max = params['max_y']
        logging.debug(
            "bed_mesh: Mesh Min: (%.2f,%.2f) Mesh Max: (%.2f,%.2f)"
            % (self.mesh_x_min, self.mesh_y_min,
               self.mesh_x_max, self.mesh_y_max))
        # Set the interpolation algorithm
        interpolation_algos = {
            'lagrange': self._sample_lagrange,
            'bicubic': self._sample_bicubic,
            'direct': self._sample_direct
        }
        self._sample = interpolation_algos.get(params['algo'])
        # Number of points to interpolate per segment
        mesh_x_pps = params['mesh_x_pps']
        mesh_y_pps = params['mesh_y_pps']
        px_cnt = params['x_count']
        py_cnt = params['y_count']
        self.mesh_x_count = (px_cnt - 1) * mesh_x_pps + px_cnt
        self.mesh_y_count = (py_cnt - 1) * mesh_y_pps + py_cnt
        self.x_mult = mesh_x_pps + 1
        self.y_mult = mesh_y_pps + 1
        logging.debug("bed_mesh: Mesh grid size - X:%d, Y:%d"
                      % (self.mesh_x_count, self.mesh_y_count))
        self.mesh_x_dist = (self.mesh_x_max - self.mesh_x_min) / \
                           (self.mesh_x_count - 1)
        self.mesh_y_dist = (self.mesh_y_max - self.mesh_y_min) / \
                           (self.mesh_y_count - 1)
    def get_mesh_matrix(self):
        if self.mesh_matrix is not None:
            return [[round(z, 6) for z in line]
                    for line in self.mesh_matrix]
        return [[]]
    def get_probed_matrix(self):
        if self.probed_matrix is not None:
            return [[round(z, 6) for z in line]
                    for line in self.probed_matrix]
        return [[]]
    def get_mesh_params(self):
        return self.mesh_params
    def get_profile_name(self):
        return self.profile_name
    def print_probed_matrix(self, print_func):
        if self.probed_matrix is not None:
            msg = "Mesh Leveling Probed Z positions:\n"
            for line in self.probed_matrix:
                for x in line:
                    msg += " %f" % x
                msg += "\n"
            print_func(msg)
        else:
            print_func("bed_mesh: bed has not been probed")
    def print_mesh(self, print_func, move_z=None):
        matrix = self.get_mesh_matrix()
        if matrix is not None:
            msg = "Mesh X,Y: %d,%d\n" % (self.mesh_x_count, self.mesh_y_count)
            if move_z is not None:
                msg += "Search Height: %d\n" % (move_z)
            msg += "Mesh Offsets: X=%.4f, Y=%.4f\n" % (
                self.mesh_offsets[0], self.mesh_offsets[1])
            msg += "Mesh Average: %.2f\n" % (self.get_z_average())
            rng = self.get_z_range()
            msg += "Mesh Range: min=%.4f max=%.4f\n" % (rng[0], rng[1])
            msg += "Interpolation Algorithm: %s\n" \
                   % (self.mesh_params['algo'])
            msg += "Measured points:\n"
            for y_line in range(self.mesh_y_count - 1, -1, -1):
                for z in matrix[y_line]:
                    msg += "  %f" % (z)
                msg += "\n"
            print_func(msg)
        else:
            print_func("bed_mesh: Z Mesh not generated")
    def build_mesh(self, z_matrix):
        self.probed_matrix = z_matrix
        self._sample(z_matrix)
        self.print_mesh(logging.debug)
    def set_zero_reference(self, xpos, ypos):
        offset = self.calc_z(xpos, ypos)
        logging.info(
            "bed_mesh: setting zero reference at (%.2f, %.2f, %.6f)"
            % (xpos, ypos, offset)
        )
        for matrix in [self.probed_matrix, self.mesh_matrix]:
            for yidx in range(len(matrix)):
                for xidx in range(len(matrix[yidx])):
                    matrix[yidx][xidx] -= offset
    def set_mesh_offsets(self, offsets):
        for i, o in enumerate(offsets):
            if o is not None:
                self.mesh_offsets[i] = o
    def get_x_coordinate(self, index):
        return self.mesh_x_min + self.mesh_x_dist * index
    def get_y_coordinate(self, index):
        return self.mesh_y_min + self.mesh_y_dist * index
    def calc_z(self, x, y):
        if self.mesh_matrix is not None:
            tbl = self.mesh_matrix
            tx, xidx = self._get_linear_index(x + self.mesh_offsets[0], 0)
            ty, yidx = self._get_linear_index(y + self.mesh_offsets[1], 1)
            z0 = lerp(tx, tbl[yidx][xidx], tbl[yidx][xidx+1])
            z1 = lerp(tx, tbl[yidx+1][xidx], tbl[yidx+1][xidx+1])
            return lerp(ty, z0, z1)
        else:
            # No mesh table generated, no z-adjustment
            return 0.
    def get_z_range(self):
        if self.mesh_matrix is not None:
            mesh_min = min([min(x) for x in self.mesh_matrix])
            mesh_max = max([max(x) for x in self.mesh_matrix])
            return mesh_min, mesh_max
        else:
            return 0., 0.
    def get_z_average(self):
        if self.mesh_matrix is not None:
            avg_z = (sum([sum(x) for x in self.mesh_matrix]) /
                     sum([len(x) for x in self.mesh_matrix]))
            # Round average to the nearest 100th.  This
            # should produce an offset that is divisible by common
            # z step distances
            return round(avg_z, 2)
        else:
            return 0.
    def _get_linear_index(self, coord, axis):
        if axis == 0:
            # X-axis
            mesh_min = self.mesh_x_min
            mesh_cnt = self.mesh_x_count
            mesh_dist = self.mesh_x_dist
            cfunc = self.get_x_coordinate
        else:
            # Y-axis
            mesh_min = self.mesh_y_min
            mesh_cnt = self.mesh_y_count
            mesh_dist = self.mesh_y_dist
            cfunc = self.get_y_coordinate
        t = 0.
        idx = int(math.floor((coord - mesh_min) / mesh_dist))
        idx = constrain(idx, 0, mesh_cnt - 2)
        t = (coord - cfunc(idx)) / mesh_dist
        return constrain(t, 0., 1.), idx
    def _sample_direct(self, z_matrix):
        self.mesh_matrix = z_matrix
    def _sample_lagrange(self, z_matrix):
        x_mult = self.x_mult
        y_mult = self.y_mult
        self.mesh_matrix = \
            [[0. if ((i % x_mult) or (j % y_mult))
             else z_matrix[j//y_mult][i//x_mult]
             for i in range(self.mesh_x_count)]
             for j in range(self.mesh_y_count)]
        xpts, ypts = self._get_lagrange_coords()
        # Interpolate X coordinates
        for i in range(self.mesh_y_count):
            # only interpolate X-rows that have probed coordinates
            if i % y_mult != 0:
                continue
            for j in range(self.mesh_x_count):
                if j % x_mult == 0:
                    continue
                x = self.get_x_coordinate(j)
                self.mesh_matrix[i][j] = self._calc_lagrange(xpts, x, i, 0)
        # Interpolate Y coordinates
        for i in range(self.mesh_x_count):
            for j in range(self.mesh_y_count):
                if j % y_mult == 0:
                    continue
                y = self.get_y_coordinate(j)
                self.mesh_matrix[j][i] = self._calc_lagrange(ypts, y, i, 1)
    def _get_lagrange_coords(self):
        xpts = []
        ypts = []
        for i in range(self.mesh_params['x_count']):
            xpts.append(self.get_x_coordinate(i * self.x_mult))
        for j in range(self.mesh_params['y_count']):
            ypts.append(self.get_y_coordinate(j * self.y_mult))
        return xpts, ypts
    def _calc_lagrange(self, lpts, c, vec, axis=0):
        pt_cnt = len(lpts)
        total = 0.
        for i in range(pt_cnt):
            n = 1.
            d = 1.
            for j in range(pt_cnt):
                if j == i:
                    continue
                n *= (c - lpts[j])
                d *= (lpts[i] - lpts[j])
            if axis == 0:
                # Calc X-Axis
                z = self.mesh_matrix[vec][i*self.x_mult]
            else:
                # Calc Y-Axis
                z = self.mesh_matrix[i*self.y_mult][vec]
            total += z * n / d
        return total
    def _sample_bicubic(self, z_matrix):
        # should work for any number of probe points above 3x3
        x_mult = self.x_mult
        y_mult = self.y_mult
        c = self.mesh_params['tension']
        self.mesh_matrix = \
            [[0. if ((i % x_mult) or (j % y_mult))
             else z_matrix[j//y_mult][i//x_mult]
             for i in range(self.mesh_x_count)]
             for j in range(self.mesh_y_count)]
        # Interpolate X values
        for y in range(self.mesh_y_count):
            if y % y_mult != 0:
                continue
            for x in range(self.mesh_x_count):
                if x % x_mult == 0:
                    continue
                pts = self._get_x_ctl_pts(x, y)
                self.mesh_matrix[y][x] = self._cardinal_spline(pts, c)
        # Interpolate Y values
        for x in range(self.mesh_x_count):
            for y in range(self.mesh_y_count):
                if y % y_mult == 0:
                    continue
                pts = self._get_y_ctl_pts(x, y)
                self.mesh_matrix[y][x] = self._cardinal_spline(pts, c)
    def _get_x_ctl_pts(self, x, y):
        # Fetch control points and t for a X value in the mesh
        x_mult = self.x_mult
        x_row = self.mesh_matrix[y]
        last_pt = self.mesh_x_count - 1 - x_mult
        if x < x_mult:
            p0 = p1 = x_row[0]
            p2 = x_row[x_mult]
            p3 = x_row[2*x_mult]
            t = x / float(x_mult)
        elif x > last_pt:
            p0 = x_row[last_pt - x_mult]
            p1 = x_row[last_pt]
            p2 = p3 = x_row[last_pt + x_mult]
            t = (x - last_pt) / float(x_mult)
        else:
            found = False
            for i in range(x_mult, last_pt, x_mult):
                if x > i and x < (i + x_mult):
                    p0 = x_row[i - x_mult]
                    p1 = x_row[i]
                    p2 = x_row[i + x_mult]
                    p3 = x_row[i + 2*x_mult]
                    t = (x - i) / float(x_mult)
                    found = True
                    break
            if not found:
                raise BedMeshError(
                    "bed_mesh: Error finding x control points")
        return p0, p1, p2, p3, t
    def _get_y_ctl_pts(self, x, y):
        # Fetch control points and t for a Y value in the mesh
        y_mult = self.y_mult
        last_pt = self.mesh_y_count - 1 - y_mult
        y_col = self.mesh_matrix
        if y < y_mult:
            p0 = p1 = y_col[0][x]
            p2 = y_col[y_mult][x]
            p3 = y_col[2*y_mult][x]
            t = y / float(y_mult)
        elif y > last_pt:
            p0 = y_col[last_pt - y_mult][x]
            p1 = y_col[last_pt][x]
            p2 = p3 = y_col[last_pt + y_mult][x]
            t = (y - last_pt) / float(y_mult)
        else:
            found = False
            for i in range(y_mult, last_pt, y_mult):
                if y > i and y < (i + y_mult):
                    p0 = y_col[i - y_mult][x]
                    p1 = y_col[i][x]
                    p2 = y_col[i + y_mult][x]
                    p3 = y_col[i + 2*y_mult][x]
                    t = (y - i) / float(y_mult)
                    found = True
                    break
            if not found:
                raise BedMeshError(
                    "bed_mesh: Error finding y control points")
        return p0, p1, p2, p3, t
    def _cardinal_spline(self, p, tension):
        t = p[4]
        t2 = t*t
        t3 = t2*t
        m1 = tension * (p[2] - p[0])
        m2 = tension * (p[3] - p[1])
        a = p[1] * (2*t3 - 3*t2 + 1)
        b = p[2] * (-2*t3 + 3*t2)
        c = m1 * (t3 - 2*t2 + t)
        d = m2 * (t3 - t2)
        return a + b + c + d


class ProfileManager:
    def __init__(self, config, bedmesh):
        self.name = config.get_name()
        self.printer = config.get_printer()
        self.gcode = self.printer.lookup_object('gcode')
        self.bedmesh = bedmesh
        self.profiles = {}
        self.incompatible_profiles = []
        # Fetch stored profiles from Config
        stored_profs = config.get_prefix_sections(self.name)
        stored_profs = [s for s in stored_profs
                        if s.get_name() != self.name]
        for profile in stored_profs:
            name = profile.get_name().split(' ', 1)[1]
            version = profile.getint('version', 0)
            if version != PROFILE_VERSION:
                logging.info(
                    "bed_mesh: Profile [%s] not compatible with this version\n"
                    "of bed_mesh.  Profile Version: %d Current Version: %d "
                    % (name, version, PROFILE_VERSION))
                self.incompatible_profiles.append(name)
                continue
            self.profiles[name] = {}
            zvals = profile.getlists('points', seps=(',', '\n'), parser=float)
            self.profiles[name]['points'] = zvals
            self.profiles[name]['mesh_params'] = params = \
                collections.OrderedDict()
            for key, t in PROFILE_OPTIONS.items():
                if t is int:
                    params[key] = profile.getint(key)
                elif t is float:
                    params[key] = profile.getfloat(key)
                elif t is str:
                    params[key] = profile.get(key)
        # Register GCode
        self.gcode.register_command(
            'BED_MESH_PROFILE', self.cmd_BED_MESH_PROFILE,
            desc=self.cmd_BED_MESH_PROFILE_help)
    def get_profiles(self):
        return self.profiles
    def _check_incompatible_profiles(self):
        if self.incompatible_profiles:
            configfile = self.printer.lookup_object('configfile')
            for profile in self.incompatible_profiles:
                configfile.remove_section('bed_mesh ' + profile)
            self.gcode.respond_info(
                "The following incompatible profiles have been detected\n"
                "and are scheduled for removal:\n%s\n"
                "The SAVE_CONFIG command will update the printer config\n"
                "file and restart the printer" %
                (('\n').join(self.incompatible_profiles)))
    def save_profile(self, prof_name):
        z_mesh = self.bedmesh.get_mesh()
        if z_mesh is None:
            self.gcode.respond_info(
                "Unable to save to profile [%s], the bed has not been probed"
                % (prof_name))
            return
        probed_matrix = z_mesh.get_probed_matrix()
        mesh_params = z_mesh.get_mesh_params()
        configfile = self.printer.lookup_object('configfile')
        cfg_name = self.name + " " + prof_name
        # set params
        z_values = ""
        for line in probed_matrix:
            z_values += "\n  "
            for p in line:
                z_values += "%.6f, " % p
            z_values = z_values[:-2]
        configfile.set(cfg_name, 'version', PROFILE_VERSION)
        configfile.set(cfg_name, 'points', z_values)
        for key, value in mesh_params.items():
            configfile.set(cfg_name, key, value)
        # save copy in local storage
        # ensure any self.profiles returned as status remains immutable
        profiles = dict(self.profiles)
        profiles[prof_name] = profile = {}
        profile['points'] = probed_matrix
        profile['mesh_params'] = collections.OrderedDict(mesh_params)
        self.profiles = profiles
        self.bedmesh.update_status()
        self.gcode.respond_info(
            "Bed Mesh state has been saved to profile [%s]\n"
            "for the current session.  The SAVE_CONFIG command will\n"
            "update the printer config file and restart the printer."
            % (prof_name))
    def load_profile(self, prof_name):
        profile = self.profiles.get(prof_name, None)
        if profile is None:
            raise self.gcode.error(
                "bed_mesh: Unknown profile [%s]" % prof_name)
        probed_matrix = profile['points']
        mesh_params = profile['mesh_params']
        z_mesh = ZMesh(mesh_params, prof_name)
        try:
            z_mesh.build_mesh(probed_matrix)
        except BedMeshError as e:
            raise self.gcode.error(str(e))
        self.bedmesh.set_mesh(z_mesh)
    def remove_profile(self, prof_name):
        if prof_name in self.profiles:
            configfile = self.printer.lookup_object('configfile')
            configfile.remove_section('bed_mesh ' + prof_name)
            profiles = dict(self.profiles)
            del profiles[prof_name]
            self.profiles = profiles
            self.bedmesh.update_status()
            self.gcode.respond_info(
                "Profile [%s] removed from storage for this session.\n"
                "The SAVE_CONFIG command will update the printer\n"
                "configuration and restart the printer" % (prof_name))
        else:
            self.gcode.respond_info(
                "No profile named [%s] to remove" % (prof_name))
    cmd_BED_MESH_PROFILE_help = "Bed Mesh Persistent Storage management"
    def cmd_BED_MESH_PROFILE(self, gcmd):
        options = collections.OrderedDict({
            'LOAD': self.load_profile,
            'SAVE': self.save_profile,
            'REMOVE': self.remove_profile
        })
        for key in options:
            name = gcmd.get(key, None)
            if name is not None:
                if not name.strip():
                    raise gcmd.error(
                        "Value for parameter '%s' must be specified" % (key)
                    )
                if name == "default" and key == 'SAVE':
                    gcmd.respond_info(
                        "Profile 'default' is reserved, please choose"
                        " another profile name.")
                else:
                    options[key](name)
                return
        gcmd.respond_info("Invalid syntax '%s'" % (gcmd.get_commandline(),))


def load_config(config):
    return BedMesh(config)