1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
|
# Support for reading SPI magnetic angle sensors
#
# Copyright (C) 2021,2022 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math
from . import bus, bulk_sensor
MIN_MSG_TIME = 0.100
TCODE_ERROR = 0xFF
TRINAMIC_DRIVERS = ["tmc2130", "tmc2208", "tmc2209", "tmc2240", "tmc2660", "tmc5160"]
CALIBRATION_BITS = 6 # 64 entries
ANGLE_BITS = 16 # angles range from 0..65535
class AngleCalibration:
def __init__(self, config):
self.printer = config.get_printer()
self.name = config.get_name()
self.stepper_name = config.get("stepper", None)
if self.stepper_name is None:
# No calibration
return
try:
import numpy
except:
raise config.error("Angle calibration requires numpy module")
sconfig = config.getsection(self.stepper_name)
sconfig.getint("microsteps", note_valid=False)
self.tmc_module = self.mcu_stepper = None
# Current calibration data
self.mcu_pos_offset = None
self.angle_phase_offset = 0.0
self.calibration_reversed = False
self.calibration = []
cal = config.get("calibrate", None)
if cal is not None:
data = [d.strip() for d in cal.split(",")]
angles = [float(d) for d in data if d]
self.load_calibration(angles)
# Register commands
self.printer.register_event_handler(
"stepper:sync_mcu_position", self.handle_sync_mcu_pos
)
self.printer.register_event_handler("klippy:connect", self.connect)
cname = self.name.split()[-1]
gcode = self.printer.lookup_object("gcode")
gcode.register_mux_command(
"ANGLE_CALIBRATE",
"CHIP",
cname,
self.cmd_ANGLE_CALIBRATE,
desc=self.cmd_ANGLE_CALIBRATE_help,
)
def handle_sync_mcu_pos(self, mcu_stepper):
if mcu_stepper.get_name() == self.stepper_name:
self.mcu_pos_offset = None
def calc_mcu_pos_offset(self, sample):
# Lookup phase information
mcu_phase_offset, phases = self.tmc_module.get_phase_offset()
if mcu_phase_offset is None:
return
# Find mcu position at time of sample
angle_time, angle_pos = sample
mcu_pos = self.mcu_stepper.get_past_mcu_position(angle_time)
# Convert angle_pos to mcu_pos units
microsteps, full_steps = self.get_microsteps()
angle_to_mcu_pos = full_steps * microsteps / float(1 << ANGLE_BITS)
angle_mpos = angle_pos * angle_to_mcu_pos
# Calculate adjustment for stepper phases
phase_diff = (
(angle_mpos + self.angle_phase_offset * angle_to_mcu_pos)
- (mcu_pos + mcu_phase_offset)
) % phases
if phase_diff > phases // 2:
phase_diff -= phases
# Store final offset
self.mcu_pos_offset = mcu_pos - (angle_mpos - phase_diff)
def apply_calibration(self, samples):
calibration = self.calibration
if not calibration:
return None
calibration_reversed = self.calibration_reversed
interp_bits = ANGLE_BITS - CALIBRATION_BITS
interp_mask = (1 << interp_bits) - 1
interp_round = 1 << (interp_bits - 1)
for i, (samp_time, angle) in enumerate(samples):
bucket = (angle & 0xFFFF) >> interp_bits
cal1 = calibration[bucket]
cal2 = calibration[bucket + 1]
adj = (angle & interp_mask) * (cal2 - cal1)
adj = cal1 + ((adj + interp_round) >> interp_bits)
angle_diff = (adj - angle) & 0xFFFF
angle_diff -= (angle_diff & 0x8000) << 1
new_angle = angle + angle_diff
if calibration_reversed:
new_angle = -new_angle
samples[i] = (samp_time, new_angle)
if self.mcu_pos_offset is None:
self.calc_mcu_pos_offset(samples[0])
if self.mcu_pos_offset is None:
return None
return self.mcu_stepper.mcu_to_commanded_position(self.mcu_pos_offset)
def load_calibration(self, angles):
# Calculate linear interpolation calibration buckets by solving
# linear equations
angle_max = 1 << ANGLE_BITS
calibration_count = 1 << CALIBRATION_BITS
bucket_size = angle_max // calibration_count
full_steps = len(angles)
nominal_step = float(angle_max) / full_steps
self.angle_phase_offset = (angles.index(min(angles)) & 3) * nominal_step
self.calibration_reversed = angles[-2] > angles[-1]
if self.calibration_reversed:
angles = list(reversed(angles))
first_step = angles.index(min(angles))
angles = angles[first_step:] + angles[:first_step]
import numpy
eqs = numpy.zeros((full_steps, calibration_count))
ans = numpy.zeros((full_steps,))
for step, angle in enumerate(angles):
int_angle = int(angle + 0.5) % angle_max
bucket = int(int_angle / bucket_size)
bucket_start = bucket * bucket_size
ang_diff = angle - bucket_start
ang_diff_per = ang_diff / bucket_size
eq = eqs[step]
eq[bucket] = 1.0 - ang_diff_per
eq[(bucket + 1) % calibration_count] = ang_diff_per
ans[step] = float(step * nominal_step)
if bucket + 1 >= calibration_count:
ans[step] -= ang_diff_per * angle_max
sol = numpy.linalg.lstsq(eqs, ans, rcond=None)[0]
isol = [int(s + 0.5) for s in sol]
self.calibration = isol + [isol[0] + angle_max]
def lookup_tmc(self):
for driver in TRINAMIC_DRIVERS:
driver_name = "%s %s" % (driver, self.stepper_name)
module = self.printer.lookup_object(driver_name, None)
if module is not None:
return module
raise self.printer.command_error(
"Unable to find TMC driver for %s" % (self.stepper_name,)
)
def connect(self):
self.tmc_module = self.lookup_tmc()
fmove = self.printer.lookup_object("force_move")
self.mcu_stepper = fmove.lookup_stepper(self.stepper_name)
def get_microsteps(self):
configfile = self.printer.lookup_object("configfile")
sconfig = configfile.get_status(None)["settings"]
stconfig = sconfig.get(self.stepper_name, {})
microsteps = stconfig["microsteps"]
full_steps = stconfig["full_steps_per_rotation"]
return microsteps, full_steps
def get_stepper_phase(self):
mcu_phase_offset, phases = self.tmc_module.get_phase_offset()
if mcu_phase_offset is None:
raise self.printer.command_error(
"Driver phase not known for %s" % (self.stepper_name,)
)
mcu_pos = self.mcu_stepper.get_mcu_position()
return (mcu_pos + mcu_phase_offset) % phases
def do_calibration_moves(self):
move = self.printer.lookup_object("force_move").manual_move
# Start data collection
msgs = []
is_finished = False
def handle_batch(msg):
if is_finished:
return False
msgs.append(msg)
return True
self.printer.lookup_object(self.name).add_client(handle_batch)
# Move stepper several turns (to allow internal sensor calibration)
microsteps, full_steps = self.get_microsteps()
mcu_stepper = self.mcu_stepper
step_dist = mcu_stepper.get_step_dist()
full_step_dist = step_dist * microsteps
rotation_dist = full_steps * full_step_dist
align_dist = step_dist * self.get_stepper_phase()
move_time = 0.010
move_speed = full_step_dist / move_time
move(mcu_stepper, -(rotation_dist + align_dist), move_speed)
move(mcu_stepper, 2.0 * rotation_dist, move_speed)
move(mcu_stepper, -2.0 * rotation_dist, move_speed)
move(mcu_stepper, 0.5 * rotation_dist - full_step_dist, move_speed)
# Move to each full step position
toolhead = self.printer.lookup_object("toolhead")
times = []
samp_dist = full_step_dist
for i in range(2 * full_steps):
move(mcu_stepper, samp_dist, move_speed)
start_query_time = toolhead.get_last_move_time() + 0.050
end_query_time = start_query_time + 0.050
times.append((start_query_time, end_query_time))
toolhead.dwell(0.150)
if i == full_steps - 1:
# Reverse direction and test each full step again
move(mcu_stepper, 0.5 * rotation_dist, move_speed)
move(mcu_stepper, -0.5 * rotation_dist + samp_dist, move_speed)
samp_dist = -samp_dist
move(mcu_stepper, 0.5 * rotation_dist + align_dist, move_speed)
toolhead.wait_moves()
# Finish data collection
is_finished = True
# Correlate query responses
cal = {}
step = 0
for msg in msgs:
for query_time, pos in msg["data"]:
# Add to step tracking
while step < len(times) and query_time > times[step][1]:
step += 1
if step < len(times) and query_time >= times[step][0]:
cal.setdefault(step, []).append(pos)
if len(cal) != len(times):
raise self.printer.command_error(
"Failed calibration - incomplete sensor data"
)
fcal = {i: cal[i] for i in range(full_steps)}
rcal = {full_steps - i - 1: cal[i + full_steps] for i in range(full_steps)}
return fcal, rcal
def calc_angles(self, meas):
total_count = total_variance = 0
angles = {}
for step, data in meas.items():
count = len(data)
angle_avg = float(sum(data)) / count
angles[step] = angle_avg
total_count += count
total_variance += sum([(d - angle_avg) ** 2 for d in data])
return angles, math.sqrt(total_variance / total_count), total_count
cmd_ANGLE_CALIBRATE_help = "Calibrate angle sensor to stepper motor"
def cmd_ANGLE_CALIBRATE(self, gcmd):
# Perform calibration movement and capture
old_calibration = self.calibration
self.calibration = []
try:
fcal, rcal = self.do_calibration_moves()
finally:
self.calibration = old_calibration
# Calculate each step position average and variance
microsteps, full_steps = self.get_microsteps()
fangles, fstd, ftotal = self.calc_angles(fcal)
rangles, rstd, rtotal = self.calc_angles(rcal)
if len({a: i for i, a in fangles.items()}) != len(fangles) or len(
{a: i for i, a in rangles.items()}
) != len(rangles):
raise self.printer.command_error(
"Failed calibration - sensor not updating for each step"
)
merged = {i: fcal[i] + rcal[i] for i in range(full_steps)}
angles, std, total = self.calc_angles(merged)
gcmd.respond_info(
"angle: stddev=%.3f (%.3f forward / %.3f reverse)"
" in %d queries" % (std, fstd, rstd, total)
)
# Order data with lowest/highest magnet position first
anglist = [angles[i] % 0xFFFF for i in range(full_steps)]
if angles[0] > angles[1]:
first_ang = max(anglist)
else:
first_ang = min(anglist)
first_phase = anglist.index(first_ang) & ~3
anglist = anglist[first_phase:] + anglist[:first_phase]
# Save results
cal_contents = []
for i, angle in enumerate(anglist):
if not i % 8:
cal_contents.append("\n")
cal_contents.append("%.1f" % (angle,))
cal_contents.append(",")
cal_contents.pop()
configfile = self.printer.lookup_object("configfile")
configfile.remove_section(self.name)
configfile.set(self.name, "calibrate", "".join(cal_contents))
class HelperA1333:
SPI_MODE = 3
SPI_SPEED = 10000000
def __init__(self, config, spi, oid):
self.spi = spi
self.is_tcode_absolute = False
self.last_temperature = None
def get_static_delay(self):
return 0.000001
def start(self):
# Setup for angle query
self.spi.spi_transfer([0x32, 0x00])
class HelperAS5047D:
SPI_MODE = 1
SPI_SPEED = int(1.0 / 0.000000350)
def __init__(self, config, spi, oid):
self.spi = spi
self.is_tcode_absolute = False
self.last_temperature = None
def get_static_delay(self):
return 0.000100
def start(self):
# Clear any errors from device
self.spi.spi_transfer([0xFF, 0xFC]) # Read DIAAGC
self.spi.spi_transfer([0x40, 0x01]) # Read ERRFL
self.spi.spi_transfer([0xC0, 0x00]) # Read NOP
class HelperTLE5012B:
SPI_MODE = 1
SPI_SPEED = 4000000
def __init__(self, config, spi, oid):
self.printer = config.get_printer()
self.spi = spi
self.oid = oid
self.is_tcode_absolute = True
self.last_temperature = None
self.mcu = spi.get_mcu()
self.mcu.register_config_callback(self._build_config)
self.spi_angle_transfer_cmd = None
self.last_chip_mcu_clock = self.last_chip_clock = 0
self.chip_freq = 0.0
name = config.get_name().split()[-1]
gcode = self.printer.lookup_object("gcode")
gcode.register_mux_command(
"ANGLE_DEBUG_READ",
"CHIP",
name,
self.cmd_ANGLE_DEBUG_READ,
desc=self.cmd_ANGLE_DEBUG_READ_help,
)
gcode.register_mux_command(
"ANGLE_DEBUG_WRITE",
"CHIP",
name,
self.cmd_ANGLE_DEBUG_WRITE,
desc=self.cmd_ANGLE_DEBUG_WRITE_help,
)
def _build_config(self):
cmdqueue = self.spi.get_command_queue()
self.spi_angle_transfer_cmd = self.mcu.lookup_query_command(
"spi_angle_transfer oid=%c data=%*s",
"spi_angle_transfer_response oid=%c clock=%u response=%*s",
oid=self.oid,
cq=cmdqueue,
)
def get_tcode_params(self):
return self.last_chip_mcu_clock, self.last_chip_clock, self.chip_freq
def _calc_crc(self, data):
crc = 0xFF
for d in data:
crc ^= d
for i in range(8):
if crc & 0x80:
crc = (crc << 1) ^ 0x1D
else:
crc <<= 1
return (~crc) & 0xFF
def _send_spi(self, msg):
for retry in range(5):
if msg[0] & 0x04:
params = self.spi_angle_transfer_cmd.send([self.oid, msg])
else:
params = self.spi.spi_transfer(msg)
resp = bytearray(params["response"])
crc = self._calc_crc(bytearray(msg[:2]) + resp[2:-2])
if crc == resp[-1]:
return params
raise self.printer.command_error("Unable to query tle5012b chip")
def _read_reg(self, reg):
cw = 0x8000 | ((reg & 0x3F) << 4) | 0x01
if reg >= 0x05 and reg <= 0x11:
cw |= 0x5000
msg = [cw >> 8, cw & 0xFF, 0, 0, 0, 0]
params = self._send_spi(msg)
resp = bytearray(params["response"])
return (resp[2] << 8) | resp[3]
def _write_reg(self, reg, val):
cw = ((reg & 0x3F) << 4) | 0x01
if reg >= 0x05 and reg <= 0x11:
cw |= 0x5000
msg = [cw >> 8, cw & 0xFF, (val >> 8) & 0xFF, val & 0xFF, 0, 0]
for retry in range(5):
self._send_spi(msg)
rval = self._read_reg(reg)
if rval == val:
return
raise self.printer.command_error("Unable to write to tle5012b chip")
def _mask_reg(self, reg, off, on):
rval = self._read_reg(reg)
self._write_reg(reg, (rval & ~off) | on)
def _query_clock(self):
# Read frame counter (and normalize to a 16bit counter)
msg = [0x84, 0x42, 0, 0, 0, 0, 0, 0] # Read with latch, AREV and FSYNC
params = self._send_spi(msg)
resp = bytearray(params["response"])
mcu_clock = self.mcu.clock32_to_clock64(params["clock"])
chip_clock = ((resp[2] & 0x7E) << 9) | ((resp[4] & 0x3E) << 4)
# Calculate temperature
temper = resp[5] - ((resp[4] & 0x01) << 8)
self.last_temperature = (temper + 152) / 2.776
return mcu_clock, chip_clock
def update_clock(self):
mcu_clock, chip_clock = self._query_clock()
mdiff = mcu_clock - self.last_chip_mcu_clock
chip_mclock = self.last_chip_clock + int(mdiff * self.chip_freq + 0.5)
cdiff = (chip_clock - chip_mclock) & 0xFFFF
cdiff -= (cdiff & 0x8000) << 1
new_chip_clock = chip_mclock + cdiff
self.chip_freq = float(new_chip_clock - self.last_chip_clock) / mdiff
self.last_chip_clock = new_chip_clock
self.last_chip_mcu_clock = mcu_clock
def start(self):
# Clear any errors from device
self._read_reg(0x00) # Read STAT
# Initialize chip (so different chip variants work the same way)
self._mask_reg(0x06, 0xC003, 0x4000) # MOD1: 42.7us, IIF disable
self._mask_reg(0x08, 0x0007, 0x0001) # MOD2: Predict off, autocal=1
self._mask_reg(0x0E, 0x0003, 0x0000) # MOD4: IIF mode
# Setup starting clock values
mcu_clock, chip_clock = self._query_clock()
self.last_chip_clock = chip_clock
self.last_chip_mcu_clock = mcu_clock
self.chip_freq = float(1 << 5) / self.mcu.seconds_to_clock(1.0 / 750000.0)
self.update_clock()
cmd_ANGLE_DEBUG_READ_help = "Query low-level angle sensor register"
def cmd_ANGLE_DEBUG_READ(self, gcmd):
reg = gcmd.get("REG", minval=0, maxval=0x30, parser=lambda x: int(x, 0))
val = self._read_reg(reg)
gcmd.respond_info("ANGLE REG[0x%02x] = 0x%04x" % (reg, val))
cmd_ANGLE_DEBUG_WRITE_help = "Set low-level angle sensor register"
def cmd_ANGLE_DEBUG_WRITE(self, gcmd):
reg = gcmd.get("REG", minval=0, maxval=0x30, parser=lambda x: int(x, 0))
val = gcmd.get("VAL", minval=0, maxval=0xFFFF, parser=lambda x: int(x, 0))
self._write_reg(reg, val)
class HelperMT6816:
SPI_MODE = 3
SPI_SPEED = 10000000
def __init__(self, config, spi, oid):
self.printer = config.get_printer()
self.spi = spi
self.oid = oid
self.mcu = spi.get_mcu()
self.mcu.register_config_callback(self._build_config)
self.spi_angle_transfer_cmd = None
self.is_tcode_absolute = False
self.last_temperature = None
name = config.get_name().split()[-1]
gcode = self.printer.lookup_object("gcode")
gcode.register_mux_command(
"ANGLE_DEBUG_READ",
"CHIP",
name,
self.cmd_ANGLE_DEBUG_READ,
desc=self.cmd_ANGLE_DEBUG_READ_help,
)
def _build_config(self):
cmdqueue = self.spi.get_command_queue()
self.spi_angle_transfer_cmd = self.mcu.lookup_query_command(
"spi_angle_transfer oid=%c data=%*s",
"spi_angle_transfer_response oid=%c clock=%u response=%*s",
oid=self.oid,
cq=cmdqueue,
)
def _send_spi(self, msg):
return self.spi.spi_transfer(msg)
def get_static_delay(self):
return 0.000001
def _read_reg(self, reg):
msg = [reg, 0, 0]
params = self._send_spi(msg)
resp = bytearray(params["response"])
val = (resp[1] << 8) | resp[2]
return val
def start(self):
pass
cmd_ANGLE_DEBUG_READ_help = "Query low-level angle sensor register"
def cmd_ANGLE_DEBUG_READ(self, gcmd):
reg = 0x83
val = self._read_reg(reg)
gcmd.respond_info("ANGLE REG[0x%02x] = 0x%04x" % (reg, val))
angle = val >> 2
parity = bin(val >> 1).count("1") % 2
gcmd.respond_info("Angle %i ~ %.2f" % (angle, angle * 360 / (1 << 14)))
gcmd.respond_info("No Mag: %i" % (val >> 1 & 0x1))
gcmd.respond_info("Parity: %i == %i" % (parity, val & 0x1))
class HelperMT6826S:
SPI_MODE = 3
SPI_SPEED = 10000000
def __init__(self, config, spi, oid):
self.printer = config.get_printer()
self.stepper_name = config.get("stepper", None)
self.spi = spi
self.oid = oid
self.mcu = spi.get_mcu()
self.mcu.register_config_callback(self._build_config)
self.spi_angle_transfer_cmd = None
self.is_tcode_absolute = False
self.last_temperature = None
name = config.get_name().split()[-1]
gcode = self.printer.lookup_object("gcode")
gcode.register_mux_command(
"ANGLE_DEBUG_READ",
"CHIP",
name,
self.cmd_ANGLE_DEBUG_READ,
desc=self.cmd_ANGLE_DEBUG_READ_help,
)
gcode.register_mux_command(
"ANGLE_CHIP_CALIBRATE",
"CHIP",
name,
self.cmd_ANGLE_CHIP_CALIBRATE,
desc=self.cmd_ANGLE_CHIP_CALIBRATE_help,
)
self.status_map = {
0: "No Calibration",
1: "Running Calibration",
2: "Calibration Failed",
3: "Calibration Successful",
}
def _build_config(self):
cmdqueue = self.spi.get_command_queue()
self.spi_angle_transfer_cmd = self.mcu.lookup_query_command(
"spi_angle_transfer oid=%c data=%*s",
"spi_angle_transfer_response oid=%c clock=%u response=%*s",
oid=self.oid,
cq=cmdqueue,
)
def _send_spi(self, msg):
params = self.spi.spi_transfer(msg)
return params
def get_static_delay(self):
return 0.00001
def _read_reg(self, reg):
reg = 0x3000 | reg
msg = [reg >> 8, reg & 0xFF, 0]
params = self._send_spi(msg)
resp = bytearray(params["response"])
return resp[2]
def _write_reg(self, reg, data):
reg = 0x6000 | reg
msg = [reg >> 8, reg & 0xFF, data]
self._send_spi(msg)
def crc8(self, data):
polynomial = 0x07
crc = 0x00
for byte in data:
crc ^= byte
for _ in range(8):
if crc & 0x80:
crc = (crc << 1) ^ polynomial
else:
crc <<= 1
crc &= 0xFF
return crc
def _read_angle(self, reg):
reg = 0x3000 | reg
msg = [reg >> 8, reg & 0xFF, 0, 0, 0, 0]
params = self._send_spi(msg)
resp = bytearray(params["response"])
angle = (resp[2] << 7) | (resp[3] >> 1)
status = resp[4]
crc_computed = self.crc8([resp[2], resp[3], resp[4]])
crc = resp[5]
return angle, status, crc, crc_computed
def start(self):
val = self._read_reg(0x00D)
# Set histeresis to 0.003 degree
self._write_reg(0x00D, (val & 0xF8) | 0x5)
def get_microsteps(self):
configfile = self.printer.lookup_object("configfile")
sconfig = configfile.get_status(None)["settings"]
stconfig = sconfig.get(self.stepper_name, {})
microsteps = stconfig["microsteps"]
full_steps = stconfig["full_steps_per_rotation"]
return microsteps, full_steps
cmd_ANGLE_CHIP_CALIBRATE_help = "Run MT6826s calibration sequence"
def cmd_ANGLE_CHIP_CALIBRATE(self, gcmd):
fmove = self.printer.lookup_object("force_move")
mcu_stepper = fmove.lookup_stepper(self.stepper_name)
if self.stepper_name is None:
gcmd.respond_info("stepper not defined")
return
gcmd.respond_info("MT6826S Run calibration sequence")
gcmd.respond_info(
"Motor will do 18+ rotations -" + " ensure pulley is disconnected"
)
req_freq = self._read_reg(0x00E) >> 4 & 0x7
# Minimal calibration speed
rpm = (3200 >> req_freq) + 1
rps = rpm / 60
move = fmove.manual_move
# Move stepper several turns (to allow internal sensor calibration)
microsteps, full_steps = self.get_microsteps()
step_dist = mcu_stepper.get_step_dist()
full_step_dist = step_dist * microsteps
rotation_dist = full_steps * full_step_dist
move(mcu_stepper, 2 * rotation_dist, rps * rotation_dist)
self._write_reg(0x155, 0x5E)
move(mcu_stepper, 20 * rotation_dist, rps * rotation_dist)
val = self._read_reg(0x113)
code = val >> 6
gcmd.respond_info("Status: %s" % (self.status_map[code]))
while code == 1:
move(mcu_stepper, 5 * rotation_dist, rps * rotation_dist)
val = self._read_reg(0x113)
code = val >> 6
gcmd.respond_info("Status: %s" % (self.status_map[code]))
if code == 2:
gcmd.respond_info("Calibration failed")
if code == 3:
gcmd.respond_info("Calibration success, please poweroff sensor")
cmd_ANGLE_DEBUG_READ_help = "Query low-level angle sensor register"
def cmd_ANGLE_DEBUG_READ(self, gcmd):
reg = gcmd.get("REG", minval=0, maxval=0x155, parser=lambda x: int(x, 0))
if reg == 0x003:
angle, status, crc1, crc2 = self._read_angle(reg)
gcmd.respond_info("ANGLE REG[0x003] = 0x%02x" % (angle >> 7))
gcmd.respond_info("ANGLE REG[0x004] = 0x%02x" % ((angle << 1) & 0xFF))
gcmd.respond_info("Angle %i ~ %.2f" % (angle, angle * 360 / (1 << 15)))
gcmd.respond_info("Weak Mag: %i" % (status >> 1 & 0x1))
gcmd.respond_info("Under Voltage: %i" % (status >> 2 & 0x1))
gcmd.respond_info("CRC: 0x%02x == 0x%02x" % (crc1, crc2))
elif reg == 0x00E:
val = self._read_reg(reg)
gcmd.respond_info("GPIO_DS = %i" % (val >> 7))
gcmd.respond_info("AUTOCAL_FREQ = %i" % (val >> 4 & 0x7))
elif reg == 0x113:
val = self._read_reg(reg)
gcmd.respond_info("Status: %s" % (self.cal_status[val >> 6]))
else:
val = self._read_reg(reg)
gcmd.respond_info("REG[0x%04x] = 0x%02x" % (reg, val))
BYTES_PER_SAMPLE = 3
SAMPLES_PER_BLOCK = bulk_sensor.MAX_BULK_MSG_SIZE // BYTES_PER_SAMPLE
SAMPLE_PERIOD = 0.000400
BATCH_UPDATES = 0.100
class Angle:
def __init__(self, config):
self.printer = config.get_printer()
self.sample_period = config.getfloat("sample_period", SAMPLE_PERIOD, above=0.0)
self.calibration = AngleCalibration(config)
# Measurement conversion
self.start_clock = self.time_shift = self.sample_ticks = 0
self.last_sequence = self.last_angle = 0
# Sensor type
sensors = {
"a1333": HelperA1333,
"as5047d": HelperAS5047D,
"tle5012b": HelperTLE5012B,
"mt6816": HelperMT6816,
"mt6826s": HelperMT6826S,
}
sensor_type = config.getchoice("sensor_type", {s: s for s in sensors})
sensor_class = sensors[sensor_type]
self.spi = bus.MCU_SPI_from_config(
config, sensor_class.SPI_MODE, default_speed=sensor_class.SPI_SPEED
)
self.mcu = mcu = self.spi.get_mcu()
self.oid = oid = mcu.create_oid()
self.sensor_helper = sensor_class(config, self.spi, oid)
# Setup mcu sensor_spi_angle bulk query code
self.query_spi_angle_cmd = None
mcu.add_config_cmd(
"config_spi_angle oid=%d spi_oid=%d spi_angle_type=%s"
% (oid, self.spi.get_oid(), sensor_type)
)
mcu.add_config_cmd(
"query_spi_angle oid=%d clock=0 rest_ticks=0 time_shift=0" % (oid,),
on_restart=True,
)
mcu.register_config_callback(self._build_config)
self.bulk_queue = bulk_sensor.BulkDataQueue(mcu, oid=oid)
# Process messages in batches
self.batch_bulk = bulk_sensor.BatchBulkHelper(
self.printer,
self._process_batch,
self._start_measurements,
self._finish_measurements,
BATCH_UPDATES,
)
self.name = config.get_name().split()[1]
api_resp = {"header": ("time", "angle")}
self.batch_bulk.add_mux_endpoint(
"angle/dump_angle", "sensor", self.name, api_resp
)
def _build_config(self):
freq = self.mcu.seconds_to_clock(1.0)
while float(TCODE_ERROR << self.time_shift) / freq < 0.002:
self.time_shift += 1
cmdqueue = self.spi.get_command_queue()
self.query_spi_angle_cmd = self.mcu.lookup_command(
"query_spi_angle oid=%c clock=%u rest_ticks=%u time_shift=%c", cq=cmdqueue
)
def get_status(self, eventtime=None):
return {"temperature": self.sensor_helper.last_temperature}
def add_client(self, client_cb):
self.batch_bulk.add_client(client_cb)
# Measurement decoding
def _extract_samples(self, raw_samples):
# Load variables to optimize inner loop below
sample_ticks = self.sample_ticks
start_clock = self.start_clock
clock_to_print_time = self.mcu.clock_to_print_time
last_sequence = self.last_sequence
last_angle = self.last_angle
time_shift = 0
static_delay = 0.0
last_chip_mcu_clock = last_chip_clock = chip_freq = inv_chip_freq = 0.0
is_tcode_absolute = self.sensor_helper.is_tcode_absolute
if is_tcode_absolute:
tparams = self.sensor_helper.get_tcode_params()
last_chip_mcu_clock, last_chip_clock, chip_freq = tparams
inv_chip_freq = 1.0 / chip_freq
else:
time_shift = self.time_shift
static_delay = self.sensor_helper.get_static_delay()
# Process every message in raw_samples
count = error_count = 0
samples = [None] * (len(raw_samples) * SAMPLES_PER_BLOCK)
for params in raw_samples:
seq_diff = (params["sequence"] - last_sequence) & 0xFFFF
last_sequence += seq_diff
samp_count = last_sequence * SAMPLES_PER_BLOCK
msg_mclock = start_clock + samp_count * sample_ticks
d = bytearray(params["data"])
for i in range(len(d) // BYTES_PER_SAMPLE):
d_ta = d[i * BYTES_PER_SAMPLE : (i + 1) * BYTES_PER_SAMPLE]
tcode = d_ta[0]
if tcode == TCODE_ERROR:
error_count += 1
continue
raw_angle = d_ta[1] | (d_ta[2] << 8)
angle_diff = (raw_angle - last_angle) & 0xFFFF
angle_diff -= (angle_diff & 0x8000) << 1
last_angle += angle_diff
mclock = msg_mclock + i * sample_ticks
if is_tcode_absolute:
# tcode is tle5012b frame counter
mdiff = mclock - last_chip_mcu_clock
chip_mclock = last_chip_clock + int(mdiff * chip_freq + 0.5)
cdiff = ((tcode << 10) - chip_mclock) & 0xFFFF
cdiff -= (cdiff & 0x8000) << 1
sclock = mclock + (cdiff - 0x800) * inv_chip_freq
else:
# tcode is mcu clock offset shifted by time_shift
sclock = mclock + (tcode << time_shift)
ptime = round(clock_to_print_time(sclock) - static_delay, 6)
samples[count] = (ptime, last_angle)
count += 1
self.last_sequence = last_sequence
self.last_angle = last_angle
del samples[count:]
return samples, error_count
# Start, stop, and process message batches
def _is_measuring(self):
return self.start_clock != 0
def _start_measurements(self):
logging.info("Starting angle '%s' measurements", self.name)
self.sensor_helper.start()
# Start bulk reading
self.bulk_queue.clear_queue()
self.last_sequence = 0
systime = self.printer.get_reactor().monotonic()
print_time = self.mcu.estimated_print_time(systime) + MIN_MSG_TIME
self.start_clock = reqclock = self.mcu.print_time_to_clock(print_time)
rest_ticks = self.mcu.seconds_to_clock(self.sample_period)
self.sample_ticks = rest_ticks
self.query_spi_angle_cmd.send(
[self.oid, reqclock, rest_ticks, self.time_shift], reqclock=reqclock
)
def _finish_measurements(self):
# Halt bulk reading
self.query_spi_angle_cmd.send_wait_ack([self.oid, 0, 0, 0])
self.bulk_queue.clear_queue()
self.sensor_helper.last_temperature = None
logging.info("Stopped angle '%s' measurements", self.name)
def _process_batch(self, eventtime):
if self.sensor_helper.is_tcode_absolute:
self.sensor_helper.update_clock()
raw_samples = self.bulk_queue.pull_queue()
if not raw_samples:
return {}
samples, error_count = self._extract_samples(raw_samples)
if not samples:
return {}
offset = self.calibration.apply_calibration(samples)
return {"data": samples, "errors": error_count, "position_offset": offset}
def load_config_prefix(config):
return Angle(config)
|