1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
# Code for handling the kinematics of linear delta robots
#
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, homing
StepList = (0, 1, 2)
# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO
SLOW_RATIO = 3.
class DeltaKinematics:
def __init__(self, printer, config):
self.config = config
self.steppers = [stepper.PrinterStepper(
printer, config.getsection('stepper_' + n), n)
for n in ['a', 'b', 'c']]
self.need_motor_enable = self.need_home = True
self.max_velocity = self.max_z_velocity = self.max_accel = 0.
radius = config.getfloat('delta_radius')
arm_length = config.getfloat('delta_arm_length')
self.arm_length2 = arm_length**2
self.limit_xy2 = -1.
tower_height_at_zeros = math.sqrt(self.arm_length2 - radius**2)
self.max_z = max([s.position_endstop for s in self.steppers])
self.limit_z = self.max_z - (arm_length - tower_height_at_zeros)
logging.info(
"Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
self.max_z, self.limit_z))
sin = lambda angle: math.sin(math.radians(angle))
cos = lambda angle: math.cos(math.radians(angle))
self.towers = [
(cos(210.)*radius, sin(210.)*radius),
(cos(330.)*radius, sin(330.)*radius),
(cos(90.)*radius, sin(90.)*radius)]
# Find the point where an XY move could result in excessive
# tower movement
half_min_step_dist = min([s.step_dist for s in self.steppers]) * .5
def ratio_to_dist(ratio):
return (ratio * math.sqrt(self.arm_length2 / (ratio**2 + 1.)
- half_min_step_dist**2)
+ half_min_step_dist)
self.slow_xy2 = (ratio_to_dist(SLOW_RATIO) - radius)**2
self.very_slow_xy2 = (ratio_to_dist(2. * SLOW_RATIO) - radius)**2
self.max_xy2 = min(radius, arm_length - radius,
ratio_to_dist(4. * SLOW_RATIO) - radius)**2
logging.info(
"Delta max build radius %.2fmm (moves slowed past %.2fmm and %.2fmm)"
% (math.sqrt(self.max_xy2), math.sqrt(self.slow_xy2),
math.sqrt(self.very_slow_xy2)))
def set_max_jerk(self, max_xy_halt_velocity, max_velocity, max_accel):
self.max_velocity = max_velocity
max_z_velocity = self.config.getfloat('max_z_velocity', max_velocity)
self.max_z_velocity = min(max_velocity, max_z_velocity)
self.max_accel = max_accel
for stepper in self.steppers:
stepper.set_max_jerk(max_xy_halt_velocity, max_accel)
def build_config(self):
for stepper in self.steppers:
stepper.build_config()
self.set_position([0., 0., 0.])
def _cartesian_to_actuator(self, coord):
return [int((math.sqrt(self.arm_length2
- (self.towers[i][0] - coord[0])**2
- (self.towers[i][1] - coord[1])**2) + coord[2])
* self.steppers[i].inv_step_dist + 0.5)
for i in StepList]
def _actuator_to_cartesian(self, pos):
# Based on code from Smoothieware
tower1 = list(self.towers[0]) + [pos[0]]
tower2 = list(self.towers[1]) + [pos[1]]
tower3 = list(self.towers[2]) + [pos[2]]
s12 = matrix_sub(tower1, tower2)
s23 = matrix_sub(tower2, tower3)
s13 = matrix_sub(tower1, tower3)
normal = matrix_cross(s12, s23)
magsq_s12 = matrix_magsq(s12)
magsq_s23 = matrix_magsq(s23)
magsq_s13 = matrix_magsq(s13)
inv_nmag_sq = 1.0 / matrix_magsq(normal)
q = 0.5 * inv_nmag_sq
a = q * magsq_s23 * matrix_dot(s12, s13)
b = -q * magsq_s13 * matrix_dot(s12, s23) # negate because we use s12 instead of s21
c = q * magsq_s12 * matrix_dot(s13, s23)
circumcenter = [tower1[0] * a + tower2[0] * b + tower3[0] * c,
tower1[1] * a + tower2[1] * b + tower3[1] * c,
tower1[2] * a + tower2[2] * b + tower3[2] * c]
r_sq = 0.5 * q * magsq_s12 * magsq_s23 * magsq_s13
dist = math.sqrt(inv_nmag_sq * (self.arm_length2 - r_sq))
return matrix_sub(circumcenter, matrix_mul(normal, dist))
def set_position(self, newpos):
pos = self._cartesian_to_actuator(newpos)
for i in StepList:
self.steppers[i].mcu_stepper.set_position(pos[i])
self.limit_xy2 = -1.
def home(self, homing_state):
# All axes are homed simultaneously
homing_state.set_axes([0, 1, 2])
s = self.steppers[0] # Assume homing speed same for all steppers
self.need_home = False
# Initial homing
homepos = [0., 0., self.max_z, None]
coord = list(homepos)
coord[2] = -1.5 * math.sqrt(self.arm_length2-self.max_xy2)
homing_state.home(list(coord), homepos, self.steppers, s.homing_speed)
# Retract
coord[2] = homepos[2] - s.homing_retract_dist
homing_state.retract(list(coord), s.homing_speed)
# Home again
coord[2] -= s.homing_retract_dist
homing_state.home(list(coord), homepos, self.steppers
, s.homing_speed/2.0, second_home=True)
# Set final homed position
coord = [(s.mcu_stepper.commanded_position + s.get_homed_offset())
* s.step_dist
for s in self.steppers]
homing_state.set_homed_position(self._actuator_to_cartesian(coord))
def motor_off(self, move_time):
self.limit_xy2 = -1.
for stepper in self.steppers:
stepper.motor_enable(move_time, 0)
self.need_motor_enable = self.need_home = True
def _check_motor_enable(self, move_time):
for i in StepList:
self.steppers[i].motor_enable(move_time, 1)
self.need_motor_enable = False
def query_endstops(self, print_time):
endstops = [(s, s.query_endstop(print_time)) for s in self.steppers]
return [(s.name, es.query_endstop_wait()) for s, es in endstops]
def check_move(self, move):
end_pos = move.end_pos
xy2 = end_pos[0]**2 + end_pos[1]**2
if xy2 <= self.limit_xy2 and not move.axes_d[2]:
# Normal XY move
return
if self.need_home:
raise homing.EndstopMoveError(end_pos, "Must home first")
limit_xy2 = self.max_xy2
if end_pos[2] > self.limit_z:
limit_xy2 = min(limit_xy2, (self.max_z - end_pos[2])**2)
if xy2 > limit_xy2 or end_pos[2] < 0. or end_pos[2] > self.max_z:
raise homing.EndstopMoveError(end_pos)
if move.axes_d[2]:
move.limit_speed(self.max_z_velocity, move.accel)
limit_xy2 = -1.
# Limit the speed/accel of this move if is is at the extreme
# end of the build envelope
extreme_xy2 = max(xy2, move.start_pos[0]**2 + move.start_pos[1]**2)
if extreme_xy2 > self.slow_xy2:
r = 0.5
if extreme_xy2 > self.very_slow_xy2:
r = 0.25
max_velocity = self.max_velocity
if move.axes_d[2]:
max_velocity = self.max_z_velocity
move.limit_speed(max_velocity * r, self.max_accel * r)
limit_xy2 = -1.
self.limit_xy2 = min(limit_xy2, self.slow_xy2)
def move(self, move_time, move):
axes_d = move.axes_d
move_d = movexy_d = move.move_d
movexy_r = 1.
movez_r = 0.
inv_movexy_d = 1. / movexy_d
if not axes_d[0] and not axes_d[1]:
movez_r = axes_d[2] * inv_movexy_d
movexy_d = movexy_r = inv_movexy_d = 0.
elif axes_d[2]:
movexy_d = math.sqrt(axes_d[0]**2 + axes_d[1]**2)
movexy_r = movexy_d * inv_movexy_d
movez_r = axes_d[2] * inv_movexy_d
inv_movexy_d = 1. / movexy_d
if self.need_motor_enable:
self._check_motor_enable(move_time)
origx, origy, origz = move.start_pos[:3]
accel_t = move.accel_t
cruise_end_t = accel_t + move.cruise_t
accel_d = move.accel_r * move_d
cruise_end_d = accel_d + move.cruise_r * move_d
inv_cruise_v = 1. / move.cruise_v
inv_accel = 1. / move.accel
accel_time_offset = move.start_v * inv_accel
accel_multiplier = 2.0 * inv_accel
accel_offset = move.start_v**2 * 0.5 * inv_accel
decel_time_offset = move.cruise_v * inv_accel + cruise_end_t
decel_offset = move.cruise_v**2 * 0.5 * inv_accel + cruise_end_d
for i in StepList:
# Find point on line of movement closest to tower
towerx_d = self.towers[i][0] - origx
towery_d = self.towers[i][1] - origy
closestxy_d = (towerx_d*axes_d[0] + towery_d*axes_d[1])*inv_movexy_d
tangentxy_d2 = towerx_d**2 + towery_d**2 - closestxy_d**2
closest_height2 = self.arm_length2 - tangentxy_d2
# Calculate accel/cruise/decel portions of move
reversexy_d = closestxy_d + math.sqrt(closest_height2)*movez_r
accel_up_d = cruise_up_d = decel_up_d = 0.
accel_down_d = cruise_down_d = decel_down_d = 0.
if reversexy_d <= 0.:
accel_down_d = accel_d
cruise_down_d = cruise_end_d
decel_down_d = move_d
elif reversexy_d >= movexy_d:
accel_up_d = accel_d
cruise_up_d = cruise_end_d
decel_up_d = move_d
elif reversexy_d < accel_d * movexy_r:
accel_up_d = reversexy_d * move_d * inv_movexy_d
accel_down_d = accel_d
cruise_down_d = cruise_end_d
decel_down_d = move_d
elif reversexy_d < cruise_end_d * movexy_r:
accel_up_d = accel_d
cruise_up_d = reversexy_d * move_d * inv_movexy_d
cruise_down_d = cruise_end_d
decel_down_d = move_d
else:
accel_up_d = accel_d
cruise_up_d = cruise_end_d
decel_up_d = reversexy_d * move_d * inv_movexy_d
decel_down_d = move_d
# Generate steps
mcu_stepper = self.steppers[i].mcu_stepper
mcu_time = mcu_stepper.print_to_mcu_time(move_time)
step_pos = mcu_stepper.commanded_position
step_dist = self.steppers[i].step_dist
height = step_pos*step_dist - origz
if accel_up_d > 0.:
count = mcu_stepper.step_delta_accel(
mcu_time - accel_time_offset, accel_up_d,
accel_offset, accel_multiplier, step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if cruise_up_d > 0.:
count = mcu_stepper.step_delta_const(
mcu_time + accel_t, cruise_up_d,
-accel_d, inv_cruise_v, step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if decel_up_d > 0.:
count = mcu_stepper.step_delta_accel(
mcu_time + decel_time_offset, decel_up_d,
-decel_offset, -accel_multiplier, step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if accel_down_d > 0.:
count = mcu_stepper.step_delta_accel(
mcu_time - accel_time_offset, accel_down_d,
accel_offset, accel_multiplier, -step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if cruise_down_d > 0.:
count = mcu_stepper.step_delta_const(
mcu_time + accel_t, cruise_down_d,
-accel_d, inv_cruise_v, -step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if decel_down_d > 0.:
count = mcu_stepper.step_delta_accel(
mcu_time + decel_time_offset, decel_down_d,
-decel_offset, -accel_multiplier, -step_dist,
height, closestxy_d, closest_height2, movez_r)
######################################################################
# Matrix helper functions for 3x1 matrices
######################################################################
def matrix_cross(m1, m2):
return [m1[1] * m2[2] - m1[2] * m2[1],
m1[2] * m2[0] - m1[0] * m2[2],
m1[0] * m2[1] - m1[1] * m2[0]]
def matrix_dot(m1, m2):
return m1[0] * m2[0] + m1[1] * m2[1] + m1[2] * m2[2]
def matrix_magsq(m1):
return m1[0]**2 + m1[1]**2 + m1[2]**2
def matrix_sub(m1, m2):
return [m1[0] - m2[0], m1[1] - m2[1], m1[2] - m2[2]]
def matrix_mul(m1, s):
return [m1[0]*s, m1[1]*s, m1[2]*s]
|