aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/delta.py
blob: dd4edb46de8f5fdc34f4256b1252fde69778b538 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Code for handling the kinematics of linear delta robots
#
# Copyright (C) 2016,2017  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, homing

StepList = (0, 1, 2)

# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO
SLOW_RATIO = 3.

class DeltaKinematics:
    def __init__(self, toolhead, printer, config):
        stepper_configs = [config.getsection('stepper_' + n)
                           for n in ['a', 'b', 'c']]
        stepper_a = stepper.PrinterHomingStepper(printer, stepper_configs[0])
        stepper_b = stepper.PrinterHomingStepper(
            printer, stepper_configs[1],
            default_position=stepper_a.position_endstop)
        stepper_c = stepper.PrinterHomingStepper(
            printer, stepper_configs[2],
            default_position=stepper_a.position_endstop)
        self.steppers = [stepper_a, stepper_b, stepper_c]
        self.need_motor_enable = self.need_home = True
        self.radius = radius = config.getfloat('delta_radius', above=0.)
        arm_length_a = stepper_configs[0].getfloat('arm_length', above=radius)
        self.arm_lengths = arm_lengths = [
            sconfig.getfloat('arm_length', arm_length_a, above=radius)
            for sconfig in stepper_configs]
        self.arm2 = [arm**2 for arm in arm_lengths]
        self.endstops = [s.position_endstop + math.sqrt(arm2 - radius**2)
                         for s, arm2 in zip(self.steppers, self.arm2)]
        self.limit_xy2 = -1.
        self.max_z = min([s.position_endstop for s in self.steppers])
        self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
        self.limit_z = min([ep - arm
                            for ep, arm in zip(self.endstops, arm_lengths)])
        logging.info(
            "Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
                self.max_z, self.limit_z))
        # Setup stepper max halt velocity
        self.max_velocity, self.max_accel = toolhead.get_max_velocity()
        self.max_z_velocity = config.getfloat(
            'max_z_velocity', self.max_velocity,
            above=0., maxval=self.max_velocity)
        max_halt_velocity = toolhead.get_max_axis_halt()
        for s in self.steppers:
            s.set_max_jerk(max_halt_velocity, self.max_accel)
        # Determine tower locations in cartesian space
        self.angles = [sconfig.getfloat('angle', angle)
                       for sconfig, angle in zip(stepper_configs,
                                                 [210., 330., 90.])]
        self.towers = [(math.cos(math.radians(angle)) * radius,
                        math.sin(math.radians(angle)) * radius)
                       for angle in self.angles]
        # Find the point where an XY move could result in excessive
        # tower movement
        half_min_step_dist = min([s.step_dist for s in self.steppers]) * .5
        min_arm_length = min(arm_lengths)
        def ratio_to_dist(ratio):
            return (ratio * math.sqrt(min_arm_length**2 / (ratio**2 + 1.)
                                      - half_min_step_dist**2)
                    + half_min_step_dist)
        self.slow_xy2 = (ratio_to_dist(SLOW_RATIO) - radius)**2
        self.very_slow_xy2 = (ratio_to_dist(2. * SLOW_RATIO) - radius)**2
        self.max_xy2 = min(radius, min_arm_length - radius,
                           ratio_to_dist(4. * SLOW_RATIO) - radius)**2
        logging.info(
            "Delta max build radius %.2fmm (moves slowed past %.2fmm and %.2fmm)"
            % (math.sqrt(self.max_xy2), math.sqrt(self.slow_xy2),
               math.sqrt(self.very_slow_xy2)))
        self.set_position([0., 0., 0.], ())
    def get_steppers(self, flags=""):
        return list(self.steppers)
    def _cartesian_to_actuator(self, coord):
        return [math.sqrt(self.arm2[i] - (self.towers[i][0] - coord[0])**2
                          - (self.towers[i][1] - coord[1])**2) + coord[2]
                for i in StepList]
    def _actuator_to_cartesian(self, pos):
        return actuator_to_cartesian(self.towers, self.arm2, pos)
    def get_position(self):
        spos = [s.mcu_stepper.get_commanded_position() for s in self.steppers]
        return self._actuator_to_cartesian(spos)
    def set_position(self, newpos, homing_axes):
        pos = self._cartesian_to_actuator(newpos)
        for i in StepList:
            self.steppers[i].set_position(pos[i])
        self.limit_xy2 = -1.
        if tuple(homing_axes) == StepList:
            self.need_home = False
    def home(self, homing_state):
        # All axes are homed simultaneously
        homing_state.set_axes([0, 1, 2])
        endstops = [es for s in self.steppers for es in s.get_endstops()]
        s = self.steppers[0] # Assume homing speed same for all steppers
        # Initial homing
        homing_speed = min(s.homing_speed, self.max_z_velocity)
        homepos = [0., 0., self.max_z, None]
        coord = list(homepos)
        coord[2] = -1.5 * math.sqrt(max(self.arm2)-self.max_xy2)
        homing_state.home(coord, homepos, endstops, homing_speed)
        # Retract
        coord[2] = homepos[2] - s.homing_retract_dist
        homing_state.retract(coord, homing_speed)
        # Home again
        coord[2] -= s.homing_retract_dist
        homing_state.home(coord, homepos, endstops,
                          homing_speed/2.0, second_home=True)
        # Set final homed position
        spos = [ep + s.get_homed_offset()
                for ep, s in zip(self.endstops, self.steppers)]
        homing_state.set_homed_position(self._actuator_to_cartesian(spos))
    def motor_off(self, print_time):
        self.limit_xy2 = -1.
        for stepper in self.steppers:
            stepper.motor_enable(print_time, 0)
        self.need_motor_enable = self.need_home = True
    def _check_motor_enable(self, print_time):
        for i in StepList:
            self.steppers[i].motor_enable(print_time, 1)
        self.need_motor_enable = False
    def check_move(self, move):
        end_pos = move.end_pos
        xy2 = end_pos[0]**2 + end_pos[1]**2
        if xy2 <= self.limit_xy2 and not move.axes_d[2]:
            # Normal XY move
            return
        if self.need_home:
            raise homing.EndstopMoveError(end_pos, "Must home first")
        limit_xy2 = self.max_xy2
        if end_pos[2] > self.limit_z:
            limit_xy2 = min(limit_xy2, (self.max_z - end_pos[2])**2)
        if xy2 > limit_xy2 or end_pos[2] < self.min_z or end_pos[2] > self.max_z:
            raise homing.EndstopMoveError(end_pos)
        if move.axes_d[2]:
            move.limit_speed(self.max_z_velocity, move.accel)
            limit_xy2 = -1.
        # Limit the speed/accel of this move if is is at the extreme
        # end of the build envelope
        extreme_xy2 = max(xy2, move.start_pos[0]**2 + move.start_pos[1]**2)
        if extreme_xy2 > self.slow_xy2:
            r = 0.5
            if extreme_xy2 > self.very_slow_xy2:
                r = 0.25
            max_velocity = self.max_velocity
            if move.axes_d[2]:
                max_velocity = self.max_z_velocity
            move.limit_speed(max_velocity * r, self.max_accel * r)
            limit_xy2 = -1.
        self.limit_xy2 = min(limit_xy2, self.slow_xy2)
    def move(self, print_time, move):
        if self.need_motor_enable:
            self._check_motor_enable(print_time)
        axes_d = move.axes_d
        move_d = move.move_d
        movexy_r = 1.
        movez_r = 0.
        inv_movexy_d = 1. / move_d
        if not axes_d[0] and not axes_d[1]:
            # Z only move
            movez_r = axes_d[2] * inv_movexy_d
            movexy_r = inv_movexy_d = 0.
        elif axes_d[2]:
            # XY+Z move
            movexy_d = math.sqrt(axes_d[0]**2 + axes_d[1]**2)
            movexy_r = movexy_d * inv_movexy_d
            movez_r = axes_d[2] * inv_movexy_d
            inv_movexy_d = 1. / movexy_d

        origx, origy, origz = move.start_pos[:3]

        accel = move.accel
        cruise_v = move.cruise_v
        accel_d = move.accel_r * move_d
        cruise_d = move.cruise_r * move_d
        decel_d = move.decel_r * move_d

        for i in StepList:
            # Calculate a virtual tower along the line of movement at
            # the point closest to this stepper's tower.
            towerx_d = self.towers[i][0] - origx
            towery_d = self.towers[i][1] - origy
            vt_startxy_d = (towerx_d*axes_d[0] + towery_d*axes_d[1])*inv_movexy_d
            tangentxy_d2 = towerx_d**2 + towery_d**2 - vt_startxy_d**2
            vt_arm_d = math.sqrt(self.arm2[i] - tangentxy_d2)
            vt_startz = origz

            # Generate steps
            step_delta = self.steppers[i].step_delta
            move_time = print_time
            if accel_d:
                step_delta(move_time, accel_d, move.start_v, accel,
                           vt_startz, vt_startxy_d, vt_arm_d, movez_r)
                vt_startz += accel_d * movez_r
                vt_startxy_d -= accel_d * movexy_r
                move_time += move.accel_t
            if cruise_d:
                step_delta(move_time, cruise_d, cruise_v, 0.,
                           vt_startz, vt_startxy_d, vt_arm_d, movez_r)
                vt_startz += cruise_d * movez_r
                vt_startxy_d -= cruise_d * movexy_r
                move_time += move.cruise_t
            if decel_d:
                step_delta(move_time, decel_d, cruise_v, -accel,
                           vt_startz, vt_startxy_d, vt_arm_d, movez_r)
    # Helper functions for DELTA_CALIBRATE script
    def get_stable_position(self):
        return [int((ep - s.mcu_stepper.get_commanded_position())
                    /  s.mcu_stepper.get_step_dist() + .5)
                * s.mcu_stepper.get_step_dist()
                for ep, s in zip(self.endstops, self.steppers)]
    def get_calibrate_params(self):
        return {
            'endstop_a': self.steppers[0].position_endstop,
            'endstop_b': self.steppers[1].position_endstop,
            'endstop_c': self.steppers[2].position_endstop,
            'angle_a': self.angles[0], 'angle_b': self.angles[1],
            'angle_c': self.angles[2], 'radius': self.radius,
            'arm_a': self.arm_lengths[0], 'arm_b': self.arm_lengths[1],
            'arm_c': self.arm_lengths[2] }


######################################################################
# Matrix helper functions for 3x1 matrices
######################################################################

def matrix_cross(m1, m2):
    return [m1[1] * m2[2] - m1[2] * m2[1],
            m1[2] * m2[0] - m1[0] * m2[2],
            m1[0] * m2[1] - m1[1] * m2[0]]

def matrix_dot(m1, m2):
    return m1[0] * m2[0] + m1[1] * m2[1] + m1[2] * m2[2]

def matrix_magsq(m1):
    return m1[0]**2 + m1[1]**2 + m1[2]**2

def matrix_add(m1, m2):
    return [m1[0] + m2[0], m1[1] + m2[1], m1[2] + m2[2]]

def matrix_sub(m1, m2):
    return [m1[0] - m2[0], m1[1] - m2[1], m1[2] - m2[2]]

def matrix_mul(m1, s):
    return [m1[0]*s, m1[1]*s, m1[2]*s]

def actuator_to_cartesian(towers, arm2, pos):
    # Find nozzle position using trilateration (see wikipedia)
    carriage1 = list(towers[0]) + [pos[0]]
    carriage2 = list(towers[1]) + [pos[1]]
    carriage3 = list(towers[2]) + [pos[2]]

    s21 = matrix_sub(carriage2, carriage1)
    s31 = matrix_sub(carriage3, carriage1)

    d = math.sqrt(matrix_magsq(s21))
    ex = matrix_mul(s21, 1. / d)
    i = matrix_dot(ex, s31)
    vect_ey = matrix_sub(s31, matrix_mul(ex, i))
    ey = matrix_mul(vect_ey, 1. / math.sqrt(matrix_magsq(vect_ey)))
    ez = matrix_cross(ex, ey)
    j = matrix_dot(ey, s31)

    x = (arm2[0] - arm2[1] + d**2) / (2. * d)
    y = (arm2[0] - arm2[2] - x**2 + (x-i)**2 + j**2) / (2. * j)
    z = -math.sqrt(arm2[0] - x**2 - y**2)

    ex_x = matrix_mul(ex, x)
    ey_y = matrix_mul(ey, y)
    ez_z = matrix_mul(ez, z)
    return matrix_add(carriage1, matrix_add(ex_x, matrix_add(ey_y, ez_z)))

def get_position_from_stable(spos, params):
    angles = [params['angle_a'], params['angle_b'], params['angle_c']]
    radius = params['radius']
    radius2 = radius**2
    towers = [(math.cos(angle) * radius, math.sin(angle) * radius)
              for angle in map(math.radians, angles)]
    arm2 = [a**2 for a in [params['arm_a'], params['arm_b'], params['arm_c']]]
    endstops = [params['endstop_a'], params['endstop_b'], params['endstop_c']]
    pos = [es + math.sqrt(a2 - radius2) - p
           for es, a2, p in zip(endstops, arm2, spos)]
    return actuator_to_cartesian(towers, arm2, pos)