aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/corexy.py
blob: a2b9924860d0dc282178b2841944c348606286c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Code for handling the kinematics of corexy robots
#
# Copyright (C) 2017-2018  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math
import stepper, homing, chelper

StepList = (0, 1, 2)

class CoreXYKinematics:
    def __init__(self, toolhead, config):
        self.rails = [ stepper.PrinterRail(config.getsection('stepper_x')),
                       stepper.PrinterRail(config.getsection('stepper_y')),
                       stepper.LookupMultiRail(config.getsection('stepper_z')) ]
        self.rails[0].add_to_endstop(self.rails[1].get_endstops()[0][0])
        self.rails[1].add_to_endstop(self.rails[0].get_endstops()[0][0])
        max_velocity, max_accel = toolhead.get_max_velocity()
        self.max_z_velocity = config.getfloat(
            'max_z_velocity', max_velocity, above=0., maxval=max_velocity)
        self.max_z_accel = config.getfloat(
            'max_z_accel', max_accel, above=0., maxval=max_accel)
        self.need_motor_enable = True
        self.limits = [(1.0, -1.0)] * 3
        # Setup iterative solver
        ffi_main, ffi_lib = chelper.get_ffi()
        self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free)
        self.move_fill = ffi_lib.move_fill
        self.rails[0].setup_itersolve(ffi_main.gc(
            ffi_lib.corexy_stepper_alloc('+'), ffi_lib.free))
        self.rails[1].setup_itersolve(ffi_main.gc(
            ffi_lib.corexy_stepper_alloc('-'), ffi_lib.free))
        self.rails[2].setup_cartesian_itersolve('z')
        # Setup stepper max halt velocity
        max_halt_velocity = toolhead.get_max_axis_halt()
        max_xy_halt_velocity = max_halt_velocity * math.sqrt(2.)
        self.rails[0].set_max_jerk(max_xy_halt_velocity, max_accel)
        self.rails[1].set_max_jerk(max_xy_halt_velocity, max_accel)
        self.rails[2].set_max_jerk(
            min(max_halt_velocity, self.max_z_velocity), self.max_z_accel)
    def get_rails(self, flags=""):
        if flags == "Z":
            return [self.rails[2]]
        return list(self.rails)
    def get_position(self):
        pos = [rail.get_commanded_position() for rail in self.rails]
        return [0.5 * (pos[0] + pos[1]), 0.5 * (pos[0] - pos[1]), pos[2]]
    def set_position(self, newpos, homing_axes):
        pos = (newpos[0] + newpos[1], newpos[0] - newpos[1], newpos[2])
        for i in StepList:
            rail = self.rails[i]
            rail.set_position(pos[i])
            if i in homing_axes:
                self.limits[i] = rail.get_range()
    def home(self, homing_state):
        # Each axis is homed independently and in order
        for axis in homing_state.get_axes():
            rail = self.rails[axis]
            # Determine moves
            position_min, position_max = rail.get_range()
            hi = rail.get_homing_info()
            if hi.positive_dir:
                pos = hi.position_endstop - 1.5*(
                    hi.position_endstop - position_min)
                rpos = hi.position_endstop - hi.retract_dist
                r2pos = rpos - hi.retract_dist
            else:
                pos = hi.position_endstop + 1.5*(
                    position_max - hi.position_endstop)
                rpos = hi.position_endstop + hi.retract_dist
                r2pos = rpos + hi.retract_dist
            # Initial homing
            homing_speed = hi.speed
            if axis == 2:
                homing_speed = min(homing_speed, self.max_z_velocity)
            homepos = [None, None, None, None]
            homepos[axis] = hi.position_endstop
            coord = [None, None, None, None]
            coord[axis] = pos
            homing_state.home(coord, homepos, rail.get_endstops(), homing_speed)
            # Retract
            coord[axis] = rpos
            homing_state.retract(coord, homing_speed)
            # Home again
            coord[axis] = r2pos
            homing_state.home(coord, homepos, rail.get_endstops(),
                              homing_speed/2.0, second_home=True)
            if axis == 2:
                # Support endstop phase detection on Z axis
                coord[axis] = hi.position_endstop + rail.get_homed_offset()
                homing_state.set_homed_position(coord)
    def motor_off(self, print_time):
        self.limits = [(1.0, -1.0)] * 3
        for rail in self.rails:
            rail.motor_enable(print_time, 0)
        self.need_motor_enable = True
    def _check_motor_enable(self, print_time, move):
        if move.axes_d[0] or move.axes_d[1]:
            self.rails[0].motor_enable(print_time, 1)
            self.rails[1].motor_enable(print_time, 1)
        if move.axes_d[2]:
            self.rails[2].motor_enable(print_time, 1)
        need_motor_enable = False
        for i in StepList:
            need_motor_enable |= not self.rails[i].is_motor_enabled()
        self.need_motor_enable = need_motor_enable
    def _check_endstops(self, move):
        end_pos = move.end_pos
        for i in StepList:
            if (move.axes_d[i]
                and (end_pos[i] < self.limits[i][0]
                     or end_pos[i] > self.limits[i][1])):
                if self.limits[i][0] > self.limits[i][1]:
                    raise homing.EndstopMoveError(
                        end_pos, "Must home axis first")
                raise homing.EndstopMoveError(end_pos)
    def check_move(self, move):
        limits = self.limits
        xpos, ypos = move.end_pos[:2]
        if (xpos < limits[0][0] or xpos > limits[0][1]
            or ypos < limits[1][0] or ypos > limits[1][1]):
            self._check_endstops(move)
        if not move.axes_d[2]:
            # Normal XY move - use defaults
            return
        # Move with Z - update velocity and accel for slower Z axis
        self._check_endstops(move)
        z_ratio = move.move_d / abs(move.axes_d[2])
        move.limit_speed(
            self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
    def move(self, print_time, move):
        if self.need_motor_enable:
            self._check_motor_enable(print_time, move)
        axes_d = move.axes_d
        cmove = self.cmove
        self.move_fill(
            cmove, print_time,
            move.accel_t, move.cruise_t, move.decel_t,
            move.start_pos[0], move.start_pos[1], move.start_pos[2],
            axes_d[0], axes_d[1], axes_d[2],
            move.start_v, move.cruise_v, move.accel)
        rail_x, rail_y, rail_z = self.rails
        if axes_d[0] or axes_d[1]:
            rail_x.step_itersolve(cmove)
            rail_y.step_itersolve(cmove)
        if axes_d[2]:
            rail_z.step_itersolve(cmove)