aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/cartesian.py
blob: 16db25d26d742bc82fddce84fc58b9d7e5a9d568 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Code for handling the kinematics of cartesian robots
#
# Copyright (C) 2016  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import stepper, homing

StepList = (0, 1, 2)

class CartKinematics:
    def __init__(self, printer, config):
        steppers = ['stepper_x', 'stepper_y', 'stepper_z']
        self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
                         for n in steppers]
        self.limits = [(1.0, -1.0)] * 3
        self.stepper_pos = [0, 0, 0]
    def build_config(self):
        for stepper in self.steppers[:2]:
            stepper.set_max_jerk(0.005 * stepper.max_accel) # XXX
        for stepper in self.steppers:
            stepper.build_config()
    def set_position(self, newpos):
        self.stepper_pos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
                            for i in StepList]
    def get_max_speed(self):
        max_xy_speed = min(s.max_velocity for s in self.steppers[:2])
        max_xy_accel = min(s.max_accel for s in self.steppers[:2])
        return max_xy_speed, max_xy_accel
    def get_homed_position(self):
        return [s.position_endstop + s.get_homed_offset()*s.step_dist
                for s in self.steppers]
    def home(self, toolhead, axes):
        # Each axis is homed independently and in order
        homing_state = homing.Homing(toolhead, axes)
        for axis in axes:
            s = self.steppers[axis]
            self.limits[axis] = (s.position_min, s.position_max)
            # Determine moves
            if s.homing_positive_dir:
                pos = s.position_endstop - 1.5*(
                    s.position_endstop - s.position_min)
                rpos = s.position_endstop - s.homing_retract_dist
                r2pos = rpos - s.homing_retract_dist
            else:
                pos = s.position_endstop + 1.5*(
                    s.position_max - s.position_endstop)
                rpos = s.position_endstop + s.homing_retract_dist
                r2pos = rpos + s.homing_retract_dist
            # Initial homing
            homepos = [None, None, None, None]
            homepos[axis] = s.position_endstop
            coord = [None, None, None, None]
            coord[axis] = pos
            homing_state.plan_home(list(coord), homepos, [s], s.homing_speed)
            # Retract
            coord[axis] = rpos
            homing_state.plan_move(list(coord), s.homing_speed)
            # Home again
            coord[axis] = r2pos
            homing_state.plan_home(list(coord), homepos, [s], s.homing_speed/2.0)
        return homing_state
    def motor_off(self, move_time):
        self.limits = [(1.0, -1.0)] * 3
        for stepper in self.steppers:
            stepper.motor_enable(move_time, 0)
    def query_endstops(self, move_time):
        return homing.QueryEndstops(["x", "y", "z"], self.steppers)
    def check_endstops(self, move):
        end_pos = move.end_pos
        for i in StepList:
            if (move.axes_d[i]
                and (end_pos[i] < self.limits[i][0]
                     or end_pos[i] > self.limits[i][1])):
                if self.limits[i][0] > self.limits[i][1]:
                    raise homing.EndstopError(end_pos, "Must home axis first")
                raise homing.EndstopError(end_pos)
    def check_move(self, move):
        limits = self.limits
        xpos, ypos = move.end_pos[:2]
        if (xpos < limits[0][0] or xpos > limits[0][1]
            or ypos < limits[1][0] or ypos > limits[1][1]):
            self.check_endstops(move)
        if not move.axes_d[2]:
            # Normal XY move - use defaults
            return
        # Move with Z - update velocity and accel for slower Z axis
        self.check_endstops(move)
        axes_d = move.axes_d
        move_d = move.move_d
        velocity_factor = min([self.steppers[i].max_velocity / abs(axes_d[i])
                               for i in StepList if axes_d[i]])
        accel_factor = min([self.steppers[i].max_accel / abs(axes_d[i])
                            for i in StepList if axes_d[i]])
        move.limit_speed(velocity_factor * move_d, accel_factor * move_d)
    def move(self, move_time, move):
        inv_accel = 1. / move.accel
        inv_cruise_v = 1. / move.cruise_v
        for i in StepList:
            inv_step_dist = self.steppers[i].inv_step_dist
            new_step_pos = int(move.end_pos[i]*inv_step_dist + 0.5)
            step_pos = self.stepper_pos[i]
            if new_step_pos == step_pos:
                continue
            self.stepper_pos[i] = new_step_pos
            steps = move.axes_d[i] * inv_step_dist
            step_offset = step_pos - move.start_pos[i] * inv_step_dist + 0.5
            sdir = 0
            if steps < 0:
                sdir = 1
                steps = -steps
                step_offset = 1. - step_offset
            mcu_time, so = self.steppers[i].prep_move(move_time, sdir)

            move_step_d = move.move_d / steps

            # Acceleration steps
            #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
            accel_time_offset = move.start_v * inv_accel
            accel_sqrt_offset = accel_time_offset**2
            accel_multiplier = 2.0 * move_step_d * inv_accel
            accel_steps = move.accel_r * steps
            step_offset = so.step_sqrt(
                mcu_time - accel_time_offset, accel_steps, step_offset
                , accel_sqrt_offset, accel_multiplier)
            mcu_time += move.accel_t
            # Cruising steps
            #t = pos/cruise_v
            cruise_multiplier = move_step_d * inv_cruise_v
            cruise_steps = move.cruise_r * steps
            step_offset = so.step_factor(
                mcu_time, cruise_steps, step_offset, cruise_multiplier)
            mcu_time += move.cruise_t
            # Deceleration steps
            #t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
            decel_time_offset = move.cruise_v * inv_accel
            decel_sqrt_offset = decel_time_offset**2
            decel_steps = move.decel_r * steps
            so.step_sqrt(
                mcu_time + decel_time_offset, decel_steps, step_offset
                , decel_sqrt_offset, -accel_multiplier)