diff options
Diffstat (limited to 'klippy')
-rw-r--r-- | klippy/chelper/__init__.py | 10 | ||||
-rw-r--r-- | klippy/chelper/kin_rotary_delta.c | 73 | ||||
-rw-r--r-- | klippy/kinematics/rotary_delta.py | 224 |
3 files changed, 305 insertions, 2 deletions
diff --git a/klippy/chelper/__init__.py b/klippy/chelper/__init__.py index b76a795a..73058081 100644 --- a/klippy/chelper/__init__.py +++ b/klippy/chelper/__init__.py @@ -17,7 +17,7 @@ COMPILE_CMD = ("gcc -Wall -g -O2 -shared -fPIC" SOURCE_FILES = [ 'pyhelper.c', 'serialqueue.c', 'stepcompress.c', 'itersolve.c', 'trapq.c', 'kin_cartesian.c', 'kin_corexy.c', 'kin_delta.c', 'kin_polar.c', - 'kin_winch.c', 'kin_extruder.c', + 'kin_rotary_delta.c', 'kin_winch.c', 'kin_extruder.c', ] DEST_LIB = "c_helper.so" OTHER_FILES = [ @@ -86,6 +86,12 @@ defs_kin_polar = """ struct stepper_kinematics *polar_stepper_alloc(char type); """ +defs_kin_rotary_delta = """ + struct stepper_kinematics *rotary_delta_stepper_alloc( + double shoulder_radius, double shoulder_height + , double angle, double upper_arm, double lower_arm); +""" + defs_kin_winch = """ struct stepper_kinematics *winch_stepper_alloc(double anchor_x , double anchor_y, double anchor_z); @@ -138,7 +144,7 @@ defs_all = [ defs_pyhelper, defs_serialqueue, defs_std, defs_stepcompress, defs_itersolve, defs_trapq, defs_kin_cartesian, defs_kin_corexy, defs_kin_delta, defs_kin_polar, - defs_kin_winch, defs_kin_extruder + defs_kin_rotary_delta, defs_kin_winch, defs_kin_extruder ] # Return the list of file modification times diff --git a/klippy/chelper/kin_rotary_delta.c b/klippy/chelper/kin_rotary_delta.c new file mode 100644 index 00000000..7859f6fc --- /dev/null +++ b/klippy/chelper/kin_rotary_delta.c @@ -0,0 +1,73 @@ +// Rotary delta kinematics stepper pulse time generation +// +// Copyright (C) 2019 Kevin O'Connor <kevin@koconnor.net> +// +// This file may be distributed under the terms of the GNU GPLv3 license. + +#include <math.h> // sqrt +#include <stddef.h> // offsetof +#include <stdlib.h> // malloc +#include <string.h> // memset +#include "compiler.h" // __visible +#include "itersolve.h" // struct stepper_kinematics +#include "trapq.h" // move_get_coord + +// The arm angle calculation is based on the following two formulas: +// elbow_x**2 + elbow_y**2 = upper_arm**2 +// (effector_x - elbow_x)**2 + (effector_y - elbow_y)**2 = lower_arm**2 + +// Calculate upper arm angle given xy position of effector joint +// (relative to shoulder joint), upper arm length, and lower arm length. +static inline double +rotary_two_arm_calc(double dx, double dy, double upper_arm2, double lower_arm2) +{ + // Determine constants such that: elbow_y = c1 - c2*elbow_x + double inv_dy = 1. / dy; + double c1 = .5 * inv_dy * (dx*dx + dy*dy + upper_arm2 - lower_arm2); + double c2 = dx * inv_dy; + // Calculate scaled elbow coordinates via quadratic equation. + double scale = c2*c2 + 1.0; + double scaled_elbow_x = c1*c2 + sqrt(scale*upper_arm2 - c1*c1); + double scaled_elbow_y = c1*scale - c2*scaled_elbow_x; + // Calculate angle in radians + return atan2(scaled_elbow_y, scaled_elbow_x); +} + +struct rotary_stepper { + struct stepper_kinematics sk; + double cos, sin, shoulder_radius, shoulder_height; + double upper_arm2, lower_arm2; +}; + +static double +rotary_stepper_calc_position(struct stepper_kinematics *sk, struct move *m + , double move_time) +{ + struct rotary_stepper *rs = container_of(sk, struct rotary_stepper, sk); + struct coord c = move_get_coord(m, move_time); + // Rotate and shift axes to an origin at shoulder joint with upper + // arm constrained to xy plane and x aligned to shoulder platform. + double sjz = c.y * rs->cos - c.x * rs->sin; + double sjx = c.x * rs->cos + c.y * rs->sin - rs->shoulder_radius; + double sjy = c.z - rs->shoulder_height; + // Calculate angle in radians + return rotary_two_arm_calc(sjx, sjy, rs->upper_arm2 + , rs->lower_arm2 - sjz*sjz); +} + +struct stepper_kinematics * __visible +rotary_delta_stepper_alloc(double shoulder_radius, double shoulder_height + , double angle, double upper_arm, double lower_arm) +{ + struct rotary_stepper *rs = malloc(sizeof(*rs)); + memset(rs, 0, sizeof(*rs)); + rs->cos = cos(angle); + rs->sin = sin(angle); + rs->shoulder_radius = shoulder_radius; + rs->shoulder_height = shoulder_height; + rs->upper_arm2 = upper_arm * upper_arm; + rs->lower_arm2 = lower_arm * lower_arm; + rs->sk.calc_position_cb = rotary_stepper_calc_position; + rs->sk.active_flags = AF_X | AF_Y | AF_Z; + return &rs->sk; +} diff --git a/klippy/kinematics/rotary_delta.py b/klippy/kinematics/rotary_delta.py new file mode 100644 index 00000000..9e928d39 --- /dev/null +++ b/klippy/kinematics/rotary_delta.py @@ -0,0 +1,224 @@ +# Code for handling the kinematics of rotary delta robots +# +# Copyright (C) 2019 Kevin O'Connor <kevin@koconnor.net> +# +# This file may be distributed under the terms of the GNU GPLv3 license. +import math, logging +import stepper, homing, mathutil, chelper + +class RotaryDeltaKinematics: + def __init__(self, toolhead, config): + # Setup tower rails + stepper_configs = [config.getsection('stepper_' + a) for a in 'abc'] + rail_a = stepper.PrinterRail( + stepper_configs[0], need_position_minmax=False, + units_in_radians=True) + a_endstop = rail_a.get_homing_info().position_endstop + rail_b = stepper.PrinterRail( + stepper_configs[1], need_position_minmax=False, + default_position_endstop=a_endstop, units_in_radians=True) + rail_c = stepper.PrinterRail( + stepper_configs[2], need_position_minmax=False, + default_position_endstop=a_endstop, units_in_radians=True) + self.rails = [rail_a, rail_b, rail_c] + config.get_printer().register_event_handler("stepper_enable:motor_off", + self._motor_off) + # Setup stepper max halt velocity + max_velocity, max_accel = toolhead.get_max_velocity() + self.max_z_velocity = config.getfloat('max_z_velocity', max_velocity, + above=0., maxval=max_velocity) + for rail in self.rails: + rail.set_max_jerk(9999999.9, 9999999.9) + # Read config + shoulder_radius = config.getfloat('shoulder_radius', above=0.) + shoulder_height = config.getfloat('shoulder_height', above=0.) + a_upper_arm = stepper_configs[0].getfloat('upper_arm_length', above=0.) + upper_arms = [ + sconfig.getfloat('upper_arm_length', a_upper_arm, above=0.) + for sconfig in stepper_configs] + a_lower_arm = stepper_configs[0].getfloat('lower_arm_length', above=0.) + lower_arms = [ + sconfig.getfloat('lower_arm_length', a_lower_arm, above=0.) + for sconfig in stepper_configs] + angles = [sconfig.getfloat('angle', angle) + for sconfig, angle in zip(stepper_configs, [30., 150., 270.])] + # Setup rotary delta calibration helper + endstops = [rail.get_homing_info().position_endstop + for rail in self.rails] + stepdists = [rail.get_steppers()[0].get_step_dist() + for rail in self.rails] + self.calibration = RotaryDeltaCalibration( + shoulder_radius, shoulder_height, angles, upper_arms, lower_arms, + endstops, stepdists) + # Setup iterative solver + for r, a, ua, la in zip(self.rails, angles, upper_arms, lower_arms): + r.setup_itersolve('rotary_delta_stepper_alloc', + shoulder_radius, shoulder_height, + math.radians(a), ua, la) + for s in self.get_steppers(): + s.set_trapq(toolhead.get_trapq()) + toolhead.register_step_generator(s.generate_steps) + # Setup boundary checks + self.need_home = True + self.limit_xy2 = -1. + eangles = [r.calc_position_from_coord([0., 0., ep]) + for r, ep in zip(self.rails, endstops)] + self.home_position = tuple( + self.calibration.actuator_to_cartesian(eangles)) + self.max_z = min(endstops) + self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z) + min_ua = min([shoulder_radius + ua for ua in upper_arms]) + min_la = min([la - shoulder_radius for la in lower_arms]) + self.max_xy2 = min(min_ua, min_la)**2 + arm_z = [self.calibration.elbow_coord(i, ea)[2] + for i, ea in enumerate(eangles)] + self.limit_z = min([az - la for az, la in zip(arm_z, lower_arms)]) + logging.info( + "Delta max build height %.2fmm (radius tapered above %.2fmm)" + % (self.max_z, self.limit_z)) + self.set_position([0., 0., 0.], ()) + def get_steppers(self, flags=""): + return [s for rail in self.rails for s in rail.get_steppers()] + def calc_tag_position(self): + spos = [rail.get_tag_position() for rail in self.rails] + return self.calibration.actuator_to_cartesian(spos) + def set_position(self, newpos, homing_axes): + for rail in self.rails: + rail.set_position(newpos) + self.limit_xy2 = -1. + if tuple(homing_axes) == (0, 1, 2): + self.need_home = False + def home(self, homing_state): + # All axes are homed simultaneously + homing_state.set_axes([0, 1, 2]) + forcepos = list(self.home_position) + #min_angles = [-.5 * math.pi] * 3 + #forcepos[2] = self.calibration.actuator_to_cartesian(min_angles)[2] + forcepos[2] = -1. + homing_state.home_rails(self.rails, forcepos, self.home_position) + def _motor_off(self, print_time): + self.limit_xy2 = -1. + self.need_home = True + def check_move(self, move): + end_pos = move.end_pos + end_xy2 = end_pos[0]**2 + end_pos[1]**2 + if end_xy2 <= self.limit_xy2 and not move.axes_d[2]: + # Normal XY move + return + if self.need_home: + raise homing.EndstopMoveError(end_pos, "Must home first") + end_z = end_pos[2] + limit_xy2 = self.max_xy2 + if end_z > self.limit_z: + limit_xy2 = min(limit_xy2, (self.max_z - end_z)**2) + if end_xy2 > limit_xy2 or end_z > self.max_z or end_z < self.min_z: + # Move out of range - verify not a homing move + if (end_pos[:2] != self.home_position[:2] + or end_z < self.min_z or end_z > self.home_position[2]): + raise homing.EndstopMoveError(end_pos) + limit_xy2 = -1. + if move.axes_d[2]: + move.limit_speed(self.max_z_velocity, move.accel) + limit_xy2 = -1. + self.limit_xy2 = limit_xy2 + def get_status(self): + return {'homed_axes': '' if self.need_home else 'XYZ'} + def get_calibration(self): + return self.calibration + +# Rotary delta parameter calibration for DELTA_CALIBRATE tool +class RotaryDeltaCalibration: + def __init__(self, shoulder_radius, shoulder_height, angles, + upper_arms, lower_arms, endstops, stepdists): + self.shoulder_radius = shoulder_radius + self.shoulder_height = shoulder_height + self.angles = angles + self.upper_arms = upper_arms + self.lower_arms = lower_arms + self.endstops = endstops + self.stepdists = stepdists + # Calculate the absolute angle of each endstop + ffi_main, self.ffi_lib = chelper.get_ffi() + self.sks = [ffi_main.gc(self.ffi_lib.rotary_delta_stepper_alloc( + shoulder_radius, shoulder_height, math.radians(a), ua, la), + self.ffi_lib.free) + for a, ua, la in zip(angles, upper_arms, lower_arms)] + self.abs_endstops = [ + self.ffi_lib.itersolve_calc_position_from_coord(sk, 0., 0., es) + for sk, es in zip(self.sks, endstops)] + def coordinate_descent_params(self, is_extended): + # Determine adjustment parameters (for use with coordinate_descent) + adj_params = ('shoulder_height', 'endstop_a', 'endstop_b', 'endstop_c') + if is_extended: + adj_params += ('shoulder_radius', 'angle_a', 'angle_b') + params = { 'shoulder_radius': self.shoulder_radius, + 'shoulder_height': self.shoulder_height } + for i, axis in enumerate('abc'): + params['angle_'+axis] = self.angles[i] + params['upper_arm_'+axis] = self.upper_arms[i] + params['lower_arm_'+axis] = self.lower_arms[i] + params['endstop_'+axis] = self.endstops[i] + params['stepdist_'+axis] = self.stepdists[i] + return adj_params, params + def new_calibration(self, params): + # Create a new calibration object from coordinate_descent params + shoulder_radius = params['shoulder_radius'] + shoulder_height = params['shoulder_height'] + angles = [params['angle_'+a] for a in 'abc'] + upper_arms = [params['upper_arm_'+a] for a in 'abc'] + lower_arms = [params['lower_arm_'+a] for a in 'abc'] + endstops = [params['endstop_'+a] for a in 'abc'] + stepdists = [params['stepdist_'+a] for a in 'abc'] + return RotaryDeltaCalibration( + shoulder_radius, shoulder_height, angles, upper_arms, lower_arms, + endstops, stepdists) + def elbow_coord(self, elbow_id, spos): + # Calculate elbow position in coordinate system at shoulder joint + sj_elbow_x = self.upper_arms[elbow_id] * math.cos(spos) + sj_elbow_y = self.upper_arms[elbow_id] * math.sin(spos) + # Shift and rotate to main cartesian coordinate system + angle = math.radians(self.angles[elbow_id]) + x = (sj_elbow_x + self.shoulder_radius) * math.cos(angle) + y = (sj_elbow_x + self.shoulder_radius) * math.sin(angle) + z = sj_elbow_y + self.shoulder_height + return (x, y, z) + def actuator_to_cartesian(self, spos): + sphere_coords = [self.elbow_coord(i, sp) for i, sp in enumerate(spos)] + lower_arm2 = [la**2 for la in self.lower_arms] + return mathutil.trilateration(sphere_coords, lower_arm2) + def get_position_from_stable(self, stable_position): + # Return cartesian coordinates for the given stable_position + spos = [ea - sp * sd + for ea, sp, sd in zip(self.abs_endstops, stable_position, + self.stepdists)] + return self.actuator_to_cartesian(spos) + def calc_stable_position(self, coord): + # Return a stable_position from a cartesian coordinate + pos = [ self.ffi_lib.itersolve_calc_position_from_coord( + sk, coord[0], coord[1], coord[2]) + for sk in self.sks ] + return [(ep - sp) / sd + for sd, ep, sp in zip(self.stepdists, self.abs_endstops, pos)] + def save_state(self, configfile): + # Save the current parameters (for use with SAVE_CONFIG) + configfile.set('printer', 'shoulder_radius', "%.6f" + % (self.shoulder_radius,)) + configfile.set('printer', 'shoulder_height', "%.6f" + % (self.shoulder_height,)) + for i, axis in enumerate('abc'): + configfile.set('stepper_'+axis, 'angle', "%.6f" % (self.angles[i],)) + configfile.set('stepper_'+axis, 'position_endstop', + "%.6f" % (self.endstops[i],)) + gcode = configfile.get_printer().lookup_object("gcode") + gcode.respond_info( + "stepper_a: position_endstop: %.6f angle: %.6f\n" + "stepper_b: position_endstop: %.6f angle: %.6f\n" + "stepper_c: position_endstop: %.6f angle: %.6f\n" + "shoulder_radius: %.6f shoulder_height: %.6f" + % (self.endstops[0], self.angles[0], + self.endstops[1], self.angles[1], + self.endstops[2], self.angles[2], + self.shoulder_radius, self.shoulder_height)) + +def load_kinematics(toolhead, config): + return RotaryDeltaKinematics(toolhead, config) |