diff options
Diffstat (limited to 'klippy/kinematics/delta.py')
-rw-r--r-- | klippy/kinematics/delta.py | 203 |
1 files changed, 203 insertions, 0 deletions
diff --git a/klippy/kinematics/delta.py b/klippy/kinematics/delta.py new file mode 100644 index 00000000..ac023242 --- /dev/null +++ b/klippy/kinematics/delta.py @@ -0,0 +1,203 @@ +# Code for handling the kinematics of linear delta robots +# +# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net> +# +# This file may be distributed under the terms of the GNU GPLv3 license. +import math, logging +import stepper, homing, chelper, mathutil + +# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO +SLOW_RATIO = 3. + +class DeltaKinematics: + def __init__(self, toolhead, config): + # Setup tower rails + stepper_configs = [config.getsection('stepper_' + n) + for n in ['a', 'b', 'c']] + rail_a = stepper.PrinterRail( + stepper_configs[0], need_position_minmax = False) + a_endstop = rail_a.get_homing_info().position_endstop + rail_b = stepper.PrinterRail( + stepper_configs[1], need_position_minmax = False, + default_position_endstop=a_endstop) + rail_c = stepper.PrinterRail( + stepper_configs[2], need_position_minmax = False, + default_position_endstop=a_endstop) + self.rails = [rail_a, rail_b, rail_c] + # Read radius and arm lengths + self.radius = radius = config.getfloat('delta_radius', above=0.) + arm_length_a = stepper_configs[0].getfloat('arm_length', above=radius) + self.arm_lengths = arm_lengths = [ + sconfig.getfloat('arm_length', arm_length_a, above=radius) + for sconfig in stepper_configs] + self.arm2 = [arm**2 for arm in arm_lengths] + self.endstops = [(rail.get_homing_info().position_endstop + + math.sqrt(arm2 - radius**2)) + for rail, arm2 in zip(self.rails, self.arm2)] + # Setup boundary checks + self.need_motor_enable = self.need_home = True + self.limit_xy2 = -1. + self.max_z = min([rail.get_homing_info().position_endstop + for rail in self.rails]) + self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z) + self.limit_z = min([ep - arm + for ep, arm in zip(self.endstops, arm_lengths)]) + logging.info( + "Delta max build height %.2fmm (radius tapered above %.2fmm)" % ( + self.max_z, self.limit_z)) + # Setup stepper max halt velocity + self.max_velocity, self.max_accel = toolhead.get_max_velocity() + self.max_z_velocity = config.getfloat( + 'max_z_velocity', self.max_velocity, + above=0., maxval=self.max_velocity) + max_halt_velocity = toolhead.get_max_axis_halt() + for rail in self.rails: + rail.set_max_jerk(max_halt_velocity, self.max_accel) + # Determine tower locations in cartesian space + self.angles = [sconfig.getfloat('angle', angle) + for sconfig, angle in zip(stepper_configs, + [210., 330., 90.])] + self.towers = [(math.cos(math.radians(angle)) * radius, + math.sin(math.radians(angle)) * radius) + for angle in self.angles] + # Setup iterative solver + ffi_main, ffi_lib = chelper.get_ffi() + self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free) + self.move_fill = ffi_lib.move_fill + for r, a, t in zip(self.rails, self.arm2, self.towers): + sk = ffi_main.gc(ffi_lib.delta_stepper_alloc(a, t[0], t[1]), + ffi_lib.free) + r.setup_itersolve(sk) + # Find the point where an XY move could result in excessive + # tower movement + half_min_step_dist = min([r.get_steppers()[0].get_step_dist() + for r in self.rails]) * .5 + min_arm_length = min(arm_lengths) + def ratio_to_dist(ratio): + return (ratio * math.sqrt(min_arm_length**2 / (ratio**2 + 1.) + - half_min_step_dist**2) + + half_min_step_dist) + self.slow_xy2 = (ratio_to_dist(SLOW_RATIO) - radius)**2 + self.very_slow_xy2 = (ratio_to_dist(2. * SLOW_RATIO) - radius)**2 + self.max_xy2 = min(radius, min_arm_length - radius, + ratio_to_dist(4. * SLOW_RATIO) - radius)**2 + logging.info( + "Delta max build radius %.2fmm (moves slowed past %.2fmm and %.2fmm)" + % (math.sqrt(self.max_xy2), math.sqrt(self.slow_xy2), + math.sqrt(self.very_slow_xy2))) + self.set_position([0., 0., 0.], ()) + def get_rails(self, flags=""): + return list(self.rails) + def _actuator_to_cartesian(self, spos): + sphere_coords = [(t[0], t[1], sp) for t, sp in zip(self.towers, spos)] + return mathutil.trilateration(sphere_coords, self.arm2) + def calc_position(self): + spos = [rail.get_commanded_position() for rail in self.rails] + return self._actuator_to_cartesian(spos) + def set_position(self, newpos, homing_axes): + for rail in self.rails: + rail.set_position(newpos) + self.limit_xy2 = -1. + if tuple(homing_axes) == (0, 1, 2): + self.need_home = False + def home(self, homing_state): + # All axes are homed simultaneously + homing_state.set_axes([0, 1, 2]) + endstops = [es for rail in self.rails for es in rail.get_endstops()] + # Initial homing - assume homing speed same for all steppers + hi = self.rails[0].get_homing_info() + homing_speed = min(hi.speed, self.max_z_velocity) + homepos = [0., 0., self.max_z, None] + coord = list(homepos) + coord[2] = -1.5 * math.sqrt(max(self.arm2)-self.max_xy2) + homing_state.home(coord, homepos, endstops, homing_speed) + # Retract + coord[2] = homepos[2] - hi.retract_dist + homing_state.retract(coord, homing_speed) + # Home again + coord[2] -= hi.retract_dist + homing_state.home(coord, homepos, endstops, + homing_speed/2.0, second_home=True) + # Set final homed position + spos = [ep + rail.get_homed_offset() + for ep, rail in zip(self.endstops, self.rails)] + homing_state.set_homed_position(self._actuator_to_cartesian(spos)) + def motor_off(self, print_time): + self.limit_xy2 = -1. + for rail in self.rails: + rail.motor_enable(print_time, 0) + self.need_motor_enable = self.need_home = True + def _check_motor_enable(self, print_time): + for rail in self.rails: + rail.motor_enable(print_time, 1) + self.need_motor_enable = False + def check_move(self, move): + end_pos = move.end_pos + xy2 = end_pos[0]**2 + end_pos[1]**2 + if xy2 <= self.limit_xy2 and not move.axes_d[2]: + # Normal XY move + return + if self.need_home: + raise homing.EndstopMoveError(end_pos, "Must home first") + limit_xy2 = self.max_xy2 + if end_pos[2] > self.limit_z: + limit_xy2 = min(limit_xy2, (self.max_z - end_pos[2])**2) + if xy2 > limit_xy2 or end_pos[2] < self.min_z or end_pos[2] > self.max_z: + raise homing.EndstopMoveError(end_pos) + if move.axes_d[2]: + move.limit_speed(self.max_z_velocity, move.accel) + limit_xy2 = -1. + # Limit the speed/accel of this move if is is at the extreme + # end of the build envelope + extreme_xy2 = max(xy2, move.start_pos[0]**2 + move.start_pos[1]**2) + if extreme_xy2 > self.slow_xy2: + r = 0.5 + if extreme_xy2 > self.very_slow_xy2: + r = 0.25 + max_velocity = self.max_velocity + if move.axes_d[2]: + max_velocity = self.max_z_velocity + move.limit_speed(max_velocity * r, self.max_accel * r) + limit_xy2 = -1. + self.limit_xy2 = min(limit_xy2, self.slow_xy2) + def move(self, print_time, move): + if self.need_motor_enable: + self._check_motor_enable(print_time) + self.move_fill( + self.cmove, print_time, + move.accel_t, move.cruise_t, move.decel_t, + move.start_pos[0], move.start_pos[1], move.start_pos[2], + move.axes_d[0], move.axes_d[1], move.axes_d[2], + move.start_v, move.cruise_v, move.accel) + for rail in self.rails: + rail.step_itersolve(self.cmove) + # Helper functions for DELTA_CALIBRATE script + def get_stable_position(self): + steppers = [rail.get_steppers()[0] for rail in self.rails] + return [int((ep - s.get_commanded_position()) / s.get_step_dist() + .5) + * s.get_step_dist() + for ep, s in zip(self.endstops, steppers)] + def get_calibrate_params(self): + return { + 'endstop_a': self.rails[0].get_homing_info().position_endstop, + 'endstop_b': self.rails[1].get_homing_info().position_endstop, + 'endstop_c': self.rails[2].get_homing_info().position_endstop, + 'angle_a': self.angles[0], 'angle_b': self.angles[1], + 'angle_c': self.angles[2], 'radius': self.radius, + 'arm_a': self.arm_lengths[0], 'arm_b': self.arm_lengths[1], + 'arm_c': self.arm_lengths[2] } + +def get_position_from_stable(spos, params): + angles = [params['angle_a'], params['angle_b'], params['angle_c']] + radius = params['radius'] + radius2 = radius**2 + towers = [(math.cos(angle) * radius, math.sin(angle) * radius) + for angle in map(math.radians, angles)] + arm2 = [a**2 for a in [params['arm_a'], params['arm_b'], params['arm_c']]] + endstops = [params['endstop_a'], params['endstop_b'], params['endstop_c']] + sphere_coords = [(t[0], t[1], es + math.sqrt(a2 - radius2) - p) + for t, es, a2, p in zip(towers, endstops, arm2, spos)] + return mathutil.trilateration(sphere_coords, arm2) + +def load_kinematics(toolhead, config): + return DeltaKinematics(toolhead, config) |