aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/cartesian.py
diff options
context:
space:
mode:
Diffstat (limited to 'klippy/cartesian.py')
-rw-r--r--klippy/cartesian.py252
1 files changed, 252 insertions, 0 deletions
diff --git a/klippy/cartesian.py b/klippy/cartesian.py
new file mode 100644
index 00000000..40840077
--- /dev/null
+++ b/klippy/cartesian.py
@@ -0,0 +1,252 @@
+# Code for handling cartesian (standard x, y, z planes) moves
+#
+# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
+#
+# This file may be distributed under the terms of the GNU GPLv3 license.
+import math, logging, time
+import lookahead, stepper, homing
+
+# Common suffixes: _d is distance (in mm), _v is velocity (in
+# mm/second), _t is time (in seconds), _r is ratio (scalar between
+# 0.0 and 1.0)
+
+StepList = (0, 1, 2, 3)
+
+class Move:
+ def __init__(self, kin, relsteps, speed):
+ self.kin = kin
+ self.relsteps = relsteps
+ self.junction_max = self.junction_start_max = self.junction_delta = 0.
+ # Calculate requested distance to travel (in mm)
+ steppers = self.kin.steppers
+ absrelsteps = [abs(relsteps[i]) for i in StepList]
+ stepper_d = [absrelsteps[i] * steppers[i].step_dist
+ for i in StepList]
+ self.move_d = math.sqrt(sum([d*d for d in stepper_d[:3]]))
+ if not self.move_d:
+ self.move_d = stepper_d[3]
+ if not self.move_d:
+ return
+ # Limit velocity to max for each stepper
+ velocity_factor = min([steppers[i].max_step_velocity / absrelsteps[i]
+ for i in StepList if absrelsteps[i]])
+ move_v = min(speed, velocity_factor * self.move_d)
+ self.junction_max = move_v**2
+ # Find max acceleration factor
+ accel_factor = min([steppers[i].max_step_accel / absrelsteps[i]
+ for i in StepList if absrelsteps[i]])
+ accel = min(self.kin.max_accel, accel_factor * self.move_d)
+ self.junction_delta = 2.0 * self.move_d * accel
+ def calc_junction(self, prev_move):
+ # Find max start junction velocity using approximated
+ # centripetal velocity as described at:
+ # https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/
+ if not prev_move.move_d or self.relsteps[2] or prev_move.relsteps[2]:
+ return
+ steppers = self.kin.steppers
+ junction_cos_theta = -sum([
+ self.relsteps[i] * prev_move.relsteps[i] * steppers[i].step_dist**2
+ for i in range(2)]) / (self.move_d * prev_move.move_d)
+ if junction_cos_theta > 0.999999:
+ return
+ junction_cos_theta = max(junction_cos_theta, -0.999999)
+ sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta));
+ R = self.kin.junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)
+ accel = self.junction_delta / (2.0 * self.move_d)
+ self.junction_start_max = min(
+ accel * R, self.junction_max, prev_move.junction_max)
+ def process(self, junction_start, junction_end):
+ # Determine accel, cruise, and decel portions of the move
+ junction_cruise = self.junction_max
+ inv_junction_delta = 1. / self.junction_delta
+ accel_r = (junction_cruise-junction_start) * inv_junction_delta
+ decel_r = (junction_cruise-junction_end) * inv_junction_delta
+ cruise_r = 1. - accel_r - decel_r
+ if cruise_r < 0.:
+ accel_r += 0.5 * cruise_r
+ decel_r = 1.0 - accel_r
+ cruise_r = 0.
+ junction_cruise = junction_start + accel_r*self.junction_delta
+ # Determine the move velocities and time spent in each portion
+ start_v = math.sqrt(junction_start)
+ cruise_v = math.sqrt(junction_cruise)
+ end_v = math.sqrt(junction_end)
+ inv_cruise_v = 1. / cruise_v
+ inv_accel = 2.0 * self.move_d * inv_junction_delta
+ accel_t = 2.0 * self.move_d * accel_r / (start_v+cruise_v)
+ cruise_t = self.move_d * cruise_r * inv_cruise_v
+ decel_t = 2.0 * self.move_d * decel_r / (end_v+cruise_v)
+
+ #logging.debug("Move: %s v=%.2f/%.2f/%.2f mt=%.3f st=%.3f %.3f %.3f" % (
+ # self.relsteps, start_v, cruise_v, end_v, move_t
+ # , next_move_time, accel_r, cruise_r))
+
+ # Calculate step times for the move
+ next_move_time = self.kin.get_next_move_time()
+ for i in StepList:
+ steps = self.relsteps[i]
+ if not steps:
+ continue
+ sdir = 0
+ if steps < 0:
+ sdir = 1
+ steps = -steps
+ clock_offset, clock_freq, so = self.kin.steppers[i].prep_move(
+ sdir, next_move_time)
+
+ step_dist = self.move_d / steps
+ step_offset = 0.5
+
+ # Acceleration steps
+ #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
+ accel_clock_offset = start_v * inv_accel * clock_freq
+ accel_sqrt_offset = accel_clock_offset**2
+ accel_multiplier = 2.0 * step_dist * inv_accel * clock_freq**2
+ accel_steps = accel_r * steps
+ step_offset = so.step_sqrt(
+ accel_steps, step_offset, clock_offset - accel_clock_offset
+ , accel_sqrt_offset, accel_multiplier)
+ clock_offset += accel_t * clock_freq
+ # Cruising steps
+ #t = pos/cruise_v
+ cruise_multiplier = step_dist * inv_cruise_v * clock_freq
+ cruise_steps = cruise_r * steps
+ step_offset = so.step_factor(
+ cruise_steps, step_offset, clock_offset, cruise_multiplier)
+ clock_offset += cruise_t * clock_freq
+ # Deceleration steps
+ #t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
+ decel_clock_offset = cruise_v * inv_accel * clock_freq
+ decel_sqrt_offset = decel_clock_offset**2
+ decel_steps = decel_r * steps
+ so.step_sqrt(
+ decel_steps, step_offset, clock_offset + decel_clock_offset
+ , decel_sqrt_offset, -accel_multiplier)
+ self.kin.update_move_time(accel_t + cruise_t + decel_t)
+
+STALL_TIME = 0.100
+
+class CartKinematics:
+ def __init__(self, printer, config):
+ self.printer = printer
+ self.reactor = printer.reactor
+ steppers = ['stepper_x', 'stepper_y', 'stepper_z', 'stepper_e']
+ self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
+ for n in steppers]
+ self.max_accel = min(s.max_step_accel*s.step_dist
+ for s in self.steppers[:2]) # XXX
+ dummy_move = Move(self, [0]*len(self.steppers), 0.)
+ dummy_move.junction_max = 0.
+ self.junction_deviation = config.getfloat('junction_deviation', 0.02)
+ self.move_queue = lookahead.MoveQueue(dummy_move)
+ self.pos = [0, 0, 0, 0]
+ # Print time tracking
+ self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
+ self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
+ self.move_flush_time = config.getfloat('move_flush_time', 0.050)
+ self.motor_off_delay = config.getfloat('motor_off_time', 60.000)
+ self.print_time = 0.
+ self.print_time_stall = 0
+ self.motor_off_time = self.reactor.NEVER
+ self.flush_timer = self.reactor.register_timer(self.flush_handler)
+ def build_config(self):
+ for stepper in self.steppers:
+ stepper.build_config()
+ # Print time tracking
+ def update_move_time(self, movetime):
+ self.print_time += movetime
+ flush_to_time = self.print_time - self.move_flush_time
+ self.printer.mcu.flush_moves(flush_to_time)
+ def get_next_move_time(self):
+ if not self.print_time:
+ self.print_time = self.buffer_time_low + STALL_TIME
+ curtime = time.time()
+ self.printer.mcu.set_print_start_time(curtime)
+ self.reactor.update_timer(self.flush_timer, self.reactor.NOW)
+ return self.print_time
+ def get_last_move_time(self):
+ self.move_queue.flush()
+ return self.get_next_move_time()
+ def reset_motor_off_time(self, eventtime):
+ self.motor_off_time = eventtime + self.motor_off_delay
+ def reset_print_time(self):
+ self.move_queue.flush()
+ self.printer.mcu.flush_moves(self.print_time)
+ self.print_time = 0.
+ self.reset_motor_off_time(time.time())
+ self.reactor.update_timer(self.flush_timer, self.motor_off_time)
+ def check_busy(self, eventtime):
+ if not self.print_time:
+ # XXX - find better way to flush initial move_queue items
+ if self.move_queue.queue:
+ self.reactor.update_timer(self.flush_timer, eventtime + 0.100)
+ return False
+ buffer_time = self.printer.mcu.get_print_buffer_time(
+ eventtime, self.print_time)
+ return buffer_time > self.buffer_time_high
+ def flush_handler(self, eventtime):
+ if not self.print_time:
+ self.move_queue.flush()
+ if not self.print_time:
+ if eventtime >= self.motor_off_time:
+ self.motor_off()
+ self.reset_print_time()
+ self.motor_off_time = self.reactor.NEVER
+ return self.motor_off_time
+ print_time = self.print_time
+ buffer_time = self.printer.mcu.get_print_buffer_time(
+ eventtime, print_time)
+ if buffer_time > self.buffer_time_low:
+ return eventtime + buffer_time - self.buffer_time_low
+ self.move_queue.flush()
+ if print_time != self.print_time:
+ self.print_time_stall += 1
+ self.dwell(self.buffer_time_low + STALL_TIME)
+ return self.reactor.NOW
+ self.reset_print_time()
+ return self.motor_off_time
+ def stats(self, eventtime):
+ buffer_time = 0.
+ if self.print_time:
+ buffer_time = self.printer.mcu.get_print_buffer_time(
+ eventtime, self.print_time)
+ return "print_time=%.3f buffer_time=%.3f print_time_stall=%d" % (
+ self.print_time, buffer_time, self.print_time_stall)
+ # Movement commands
+ def get_position(self):
+ return [self.pos[i] * self.steppers[i].step_dist
+ for i in StepList]
+ def set_position(self, newpos):
+ self.pos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
+ for i in StepList]
+ def move(self, newpos, speed, sloppy=False):
+ # Round to closest step position
+ newpos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
+ for i in StepList]
+ relsteps = [newpos[i] - self.pos[i] for i in StepList]
+ self.pos = newpos
+ if relsteps == [0]*len(newpos):
+ # no move
+ return
+ #logging.debug("; dist %s @ %d\n" % (
+ # [newpos[i]*self.steppers[i].step_dist for i in StepList], speed))
+ # Create move and queue it
+ move = Move(self, relsteps, speed)
+ move.calc_junction(self.move_queue.prev_move())
+ self.move_queue.add_move(move)
+ def home(self, axis):
+ # Each axis is homed independently and in order
+ homing_state = homing.Homing(self, self.steppers)
+ for a in axis:
+ homing_state.plan_home(a)
+ return homing_state
+ def dwell(self, delay):
+ self.get_last_move_time()
+ self.update_move_time(delay)
+ def motor_off(self):
+ self.dwell(STALL_TIME)
+ last_move_time = self.get_last_move_time()
+ for stepper in self.steppers:
+ stepper.motor_enable(last_move_time, 0)
+ self.dwell(STALL_TIME)
+ logging.debug('; Max time of %f' % (last_move_time,))