aboutsummaryrefslogtreecommitdiffstats
path: root/docs/Benchmarks.md
diff options
context:
space:
mode:
Diffstat (limited to 'docs/Benchmarks.md')
-rw-r--r--docs/Benchmarks.md288
1 files changed, 288 insertions, 0 deletions
diff --git a/docs/Benchmarks.md b/docs/Benchmarks.md
new file mode 100644
index 00000000..918489ca
--- /dev/null
+++ b/docs/Benchmarks.md
@@ -0,0 +1,288 @@
+This document describes Klipper benchmarks.
+
+Micro-controller Benchmarks
+===========================
+
+This section describes the mechanism used to generate the Klipper
+micro-controller step rate benchmarks.
+
+The primary goal of the benchmarks is to provide a consistent
+mechanism for measuring the impact of coding changes within the
+software. A secondary goal is to provide high-level metrics for
+comparing the performance between chips and between software
+platforms.
+
+The step rate benchmark is designed to find the maximum stepping rate
+that the hardware and software can reach. This benchmark stepping rate
+is not achievable in day-to-day use as Klipper needs to perform other
+tasks (eg, mcu/host communication, temperature reading, endstop
+checking) in any real-world usage.
+
+In general, the pins for the benchmark tests are chosen to flash LEDs
+or other innocuous pins. **Always verify that it is safe to drive the
+configured pins prior to running a benchmark.** It is not recommended
+to drive an actual stepper during a benchmark.
+
+## Step rate benchmark test ##
+
+The test is performed using the console.py tool (described in
+[Debugging.md](Debugging.md)). The micro-controller is configured for
+the particular hardware platform (see below) and then the following is
+cut-and-paste into the console.py terminal window:
+```
+SET start_clock {clock+freq}
+SET ticks 1000
+
+reset_step_clock oid=0 clock={start_clock}
+set_next_step_dir oid=0 dir=0
+queue_step oid=0 interval={ticks} count=60000 add=0
+set_next_step_dir oid=0 dir=1
+queue_step oid=0 interval=3000 count=1 add=0
+
+reset_step_clock oid=1 clock={start_clock}
+set_next_step_dir oid=1 dir=0
+queue_step oid=1 interval={ticks} count=60000 add=0
+set_next_step_dir oid=1 dir=1
+queue_step oid=1 interval=3000 count=1 add=0
+
+reset_step_clock oid=2 clock={start_clock}
+set_next_step_dir oid=2 dir=0
+queue_step oid=2 interval={ticks} count=60000 add=0
+set_next_step_dir oid=2 dir=1
+queue_step oid=2 interval=3000 count=1 add=0
+```
+
+The above tests three steppers simultaneously stepping. If running the
+above results in a "Rescheduled timer in the past" or "Stepper too far
+in past" error then it indicates the `ticks` parameter is too low (it
+results in a stepping rate that is too fast). The goal is to find the
+lowest setting of the ticks parameter that reliably results in a
+successful completion of the test. It should be possible to bisect the
+ticks parameter until a stable value is found.
+
+On a failure, one can copy-and-paste the following to clear the error
+in preparation for the next test:
+```
+clear_shutdown
+```
+
+To obtain the single stepper and dual stepper benchmarks, the same
+configuration sequence is used, but only the first block (for the
+single stepper case) or first two blocks (for the dual stepper case)
+of the above test is cut-and-paste into the console.py window.
+
+To produce the benchmarks found in the Features.md document, the total
+number of steps per second is calculated by multiplying the number of
+active steppers with the nominal mcu frequency and dividing by the
+final ticks parameter. The results are rounded to the nearest K. For
+example, with three active steppers:
+```
+ECHO Test result is: {"%.0fK" % (3. * freq / ticks / 1000.)}
+```
+
+### AVR step rate benchmark ###
+
+The following configuration sequence is used on AVR chips:
+```
+PINS arduino
+allocate_oids count=3
+config_stepper oid=0 step_pin=ar29 dir_pin=ar28 min_stop_interval=0 invert_step=0
+config_stepper oid=1 step_pin=ar27 dir_pin=ar26 min_stop_interval=0 invert_step=0
+config_stepper oid=2 step_pin=ar23 dir_pin=ar22 min_stop_interval=0 invert_step=0
+finalize_config crc=0
+```
+
+The test was last run on commit `b161a69e` with gcc version `avr-gcc
+(GCC) 4.8.1`. Both the 16Mhz and 20Mhz tests were run using simulavr
+configured for an atmega644p (previous tests have confirmed simulavr
+results match tests on both a 16Mhz at90usb and a 16Mhz atmega2560).
+On both 16Mhz and 20Mhz the best single stepper result is `SET ticks
+106`, the best dual stepper result is `SET ticks 276`, and the best
+three stepper result is `SET ticks 481`.
+
+### Arduino Due step rate benchmark ###
+
+The following configuration sequence is used on the Due:
+```
+allocate_oids count=3
+config_stepper oid=0 step_pin=PB27 dir_pin=PA21 min_stop_interval=0 invert_step=0
+config_stepper oid=1 step_pin=PB26 dir_pin=PC30 min_stop_interval=0 invert_step=0
+config_stepper oid=2 step_pin=PA21 dir_pin=PC30 min_stop_interval=0 invert_step=0
+finalize_config crc=0
+```
+
+The test was last run on commit `74c21654` with gcc version
+`arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0`. The best single
+stepper result is `SET ticks 388`, the best dual stepper result is
+`SET ticks 405`, and the best three stepper result is `SET ticks 576`.
+
+### Duet Maestro step rate benchmark ###
+
+The following configuration sequence is used on the Duet Maestro:
+```
+allocate_oids count=3
+config_stepper oid=0 step_pin=PC26 dir_pin=PC18 min_stop_interval=0 invert_step=0
+config_stepper oid=1 step_pin=PC26 dir_pin=PA8 min_stop_interval=0 invert_step=0
+config_stepper oid=2 step_pin=PC26 dir_pin=PB4 min_stop_interval=0 invert_step=0
+finalize_config crc=0
+```
+
+The test was last run on commit `74c21654` with gcc version
+`arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0`. The best single
+stepper result is `SET ticks 553`, the best dual stepper result is
+`SET ticks 563`, and the best three stepper result is `SET ticks 623`.
+
+### Duet Wifi step rate benchmark ###
+
+The following configuration sequence is used on the Duet Wifi:
+```
+allocate_oids count=4
+config_stepper oid=0 step_pin=PD6 dir_pin=PD11 min_stop_interval=0 invert_step=0
+config_stepper oid=1 step_pin=PD7 dir_pin=PD12 min_stop_interval=0 invert_step=0
+config_stepper oid=2 step_pin=PD8 dir_pin=PD13 min_stop_interval=0 invert_step=0
+config_stepper oid=3 step_pin=PD5 dir_pin=PA1 min_stop_interval=0 invert_step=0
+finalize_config crc=0
+
+```
+
+The test was last run on commit `59a60d68` with gcc version
+`arm-none-eabi-gcc 7.3.1 20180622 (release)
+[ARM/embedded-7-branch revision 261907]`. The best single stepper
+result is `SET ticks 519`, the best dual stepper result is `SET ticks
+520`, and the best three stepper result is `SET ticks 525`, and the
+best four stepper result is `SET ticks 703`.
+
+### Beaglebone PRU step rate benchmark ###
+
+The following configuration sequence is used on the PRU:
+```
+PINS beaglebone
+allocate_oids count=3
+config_stepper oid=0 step_pin=P8_13 dir_pin=P8_12 min_stop_interval=0 invert_step=0
+config_stepper oid=1 step_pin=P8_15 dir_pin=P8_14 min_stop_interval=0 invert_step=0
+config_stepper oid=2 step_pin=P8_19 dir_pin=P8_18 min_stop_interval=0 invert_step=0
+finalize_config crc=0
+```
+
+The test was last run on commit `b161a69e` with gcc version `pru-gcc
+(GCC) 8.0.0 20170530 (experimental)`. The best single stepper result
+is `SET ticks 861`, the best dual stepper result is `SET ticks 853`,
+and the best three stepper result is `SET ticks 883`.
+
+### STM32F103 step rate benchmark ###
+
+The following configuration sequence is used on the STM32F103:
+```
+allocate_oids count=3
+config_stepper oid=0 step_pin=PC13 dir_pin=PB5 min_stop_interval=0 invert_step=0
+config_stepper oid=1 step_pin=PB3 dir_pin=PB6 min_stop_interval=0 invert_step=0
+config_stepper oid=2 step_pin=PA4 dir_pin=PB7 min_stop_interval=0 invert_step=0
+finalize_config crc=0
+```
+
+The test was last run on commit `9f3517fd` with gcc version
+`arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0`. The best single
+stepper result is `SET ticks 345`, the best dual stepper result is
+`SET ticks 365`, and the best three stepper result is `SET ticks 606`.
+
+### LPC176x step rate benchmark ###
+
+The following configuration sequence is used on the LPC176x:
+```
+allocate_oids count=3
+config_stepper oid=0 step_pin=P1.20 dir_pin=P1.18 min_stop_interval=0 invert_step=0
+config_stepper oid=1 step_pin=P1.21 dir_pin=P1.18 min_stop_interval=0 invert_step=0
+config_stepper oid=2 step_pin=P1.23 dir_pin=P1.18 min_stop_interval=0 invert_step=0
+finalize_config crc=0
+```
+
+The test was last run on commit `9f3517fd` with gcc version
+`arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0`. For the 100Mhz
+LPC1768, the best single stepper result is `SET ticks 448`, the best
+dual stepper result is `SET ticks 450`, and the best three stepper
+result is `SET ticks 523`. The 120Mhz LPC1769 results were obtained by
+overclocking an LPC1768 to 120Mhz - the best single stepper result is
+`SET ticks 525`, the best dual stepper result is `SET ticks 526`, and
+the best three stepper result is `SET ticks 545`.
+
+### SAMD21 step rate benchmark ###
+
+The following configuration sequence is used on the SAMD21:
+```
+allocate_oids count=3
+config_stepper oid=0 step_pin=PA27 dir_pin=PA20 min_stop_interval=0 invert_step=0
+config_stepper oid=1 step_pin=PB3 dir_pin=PA21 min_stop_interval=0 invert_step=0
+config_stepper oid=2 step_pin=PA17 dir_pin=PA21 min_stop_interval=0 invert_step=0
+finalize_config crc=0
+```
+
+The test was last run on commit `9f3517fd` with gcc version
+`arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0`. The best single
+stepper result is `SET ticks 277`, the best dual stepper result is
+`SET ticks 410`, and the best three stepper result is `SET ticks 664`.
+
+### SAMD51 step rate benchmark ###
+
+The following configuration sequence is used on the SAMD51:
+```
+allocate_oids count=3
+config_stepper oid=0 step_pin=PA22 dir_pin=PA20 min_stop_interval=0 invert_step=0
+config_stepper oid=1 step_pin=PA22 dir_pin=PA21 min_stop_interval=0 invert_step=0
+config_stepper oid=2 step_pin=PA22 dir_pin=PA19 min_stop_interval=0 invert_step=0
+config_stepper oid=3 step_pin=PA22 dir_pin=PA18 min_stop_interval=0 invert_step=0
+finalize_config crc=0
+```
+
+The test was last run on commit `9f3517fd` with gcc version
+`arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0` on a SAMD51G19A
+micro-controller. The best single stepper result is `SET ticks 516`,
+the best dual stepper result is `SET ticks 520`, the best three
+stepper result is `SET ticks 519`, and the best four stepper result is
+`SET ticks 655`.
+
+## Command dispatch benchmark ##
+
+The command dispatch benchmark tests how many "dummy" commands the
+micro-controller can process. It is primarily a test of the hardware
+communication mechanism. The test is run using the console.py tool
+(described in [Debugging.md](Debugging.md)). The following is
+cut-and-paste into the console.py terminal window:
+```
+DELAY {clock + 2*freq} get_uptime
+FLOOD 100000 0.0 end_group
+get_uptime
+```
+
+When the test completes, determine the difference between the clocks
+reported in the two "uptime" response messages. The total number of
+commands per second is then `100000 * mcu_frequency / clock_diff`.
+
+Note that this test may saturate the USB/CPU capacity of a Raspberry
+Pi. The benchmarks below are with console.py running on a desktop
+class machine.
+
+| MCU | Rate | Build | Build compiler |
+| ------------------- | ---- | -------- | ------------------- |
+| pru (shared memory) | 5K | b161a69e | pru-gcc (GCC) 8.0.0 20170530 (experimental) |
+| atmega2560 (serial) | 23K | b161a69e | avr-gcc (GCC) 4.8.1 |
+| sam3x8e (serial) | 23K | b161a69e | arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0 |
+| at90usb1286 (USB) | 75K | b161a69e | avr-gcc (GCC) 4.8.1 |
+| samd21 (USB) | 238K | b161a69e | arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0 |
+| stm32f103 (USB) | 335K | b161a69e | arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0 |
+| sam3x8e (USB) | 450K | a5aede52 | arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0 |
+| lpc1768 (USB) | 546K | b161a69e | arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0 |
+| sam4s8c (USB) | 619K | a5aede52 | arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0 |
+| lpc1769 (USB) | 619K | b161a69e | arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0 |
+| samd51 (USB) | 620K | 8cd83b4c | arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0 |
+
+Host Benchmarks
+===============
+
+It is possible to run timing tests on the host software using the
+"batch mode" processing mechanism (described in
+[Debugging.md](Debugging.md)). This is typically done by choosing a
+large and complex G-Code file and timing how long it takes for the
+host software to process it. For example:
+```
+time ~/klippy-env/bin/python ./klippy/klippy.py config/example.cfg -i something_complex.gcode -o /dev/null -d out/klipper.dict
+```