aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--klippy/extras/delta_calibrate.py84
-rw-r--r--klippy/kinematics/delta.py42
2 files changed, 82 insertions, 44 deletions
diff --git a/klippy/extras/delta_calibrate.py b/klippy/extras/delta_calibrate.py
index 99b59490..b065da74 100644
--- a/klippy/extras/delta_calibrate.py
+++ b/klippy/extras/delta_calibrate.py
@@ -3,9 +3,64 @@
# Copyright (C) 2017-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
-import math, logging
+import math, logging, collections
import probe, mathutil
+
+######################################################################
+# Delta "stable position" coordinates
+######################################################################
+
+# A "stable position" is a 3-tuple containing the number of steps
+# taken since hitting the endstop on each delta tower. Delta
+# calibration uses this coordinate system because it allows a position
+# to be described independent of the software parameters.
+
+# Storage helper for delta parameters
+DeltaParams = collections.namedtuple('DeltaParams', [
+ 'radius', 'angles', 'arms', 'endstops', 'stepdists',
+ 'towers', 'abs_endstops'])
+
+# Generate delta_params from delta configuration parameters
+def build_delta_params(params):
+ radius = params['radius']
+ angles = [params['angle_'+a] for a in 'abc']
+ arms = [params['arm_'+a] for a in 'abc']
+ endstops = [params['endstop_'+a] for a in 'abc']
+ stepdists = [params['stepdist_'+a] for a in 'abc']
+ # Calculate the XY cartesian coordinates of the delta towers
+ radian_angles = [math.radians(a) for a in angles]
+ towers = [(math.cos(a) * radius, math.sin(a) * radius)
+ for a in radian_angles]
+ # Calculate the absolute Z height of each tower endstop
+ radius2 = radius**2
+ abs_endstops = [e + math.sqrt(a**2 - radius2)
+ for e, a in zip(endstops, arms)]
+ return DeltaParams(radius, angles, arms, endstops, stepdists,
+ towers, abs_endstops)
+
+# Return cartesian coordinates for the given stable_positions when the
+# given delta_params are used.
+def get_position_from_stable(stable_position, delta_params):
+ dp = delta_params
+ sphere_coords = [
+ (t[0], t[1], es - sp * sd)
+ for sd, t, es, sp in zip(
+ dp.stepdists, dp.towers, dp.abs_endstops, stable_position) ]
+ return mathutil.trilateration(sphere_coords, [a**2 for a in dp.arms])
+
+# Return a stable position from the nominal delta tower positions
+def get_stable_position(stepper_position, delta_params):
+ dp = delta_params
+ return [int((ep - sp) / sd + .5)
+ for sd, ep, sp in zip(
+ dp.stepdists, dp.abs_endstops, stepper_position)]
+
+
+######################################################################
+# Delta Calibrate class
+######################################################################
+
class DeltaCalibrate:
def __init__(self, config):
self.printer = config.get_printer()
@@ -32,27 +87,34 @@ class DeltaCalibrate:
self.probe_helper.start_probe()
def get_probed_position(self):
kin = self.printer.lookup_object('toolhead').get_kinematics()
- return kin.get_stable_position()
+ return [s.get_commanded_position() for s in kin.get_steppers()]
def finalize(self, offsets, positions):
z_offset = offsets[2]
kin = self.printer.lookup_object('toolhead').get_kinematics()
- logging.info("Calculating delta_calibrate with: %s", positions)
params = kin.get_calibrate_params()
- logging.info("Initial delta_calibrate parameters: %s", params)
- adj_params = ('endstop_a', 'endstop_b', 'endstop_c', 'radius',
- 'angle_a', 'angle_b')
+ orig_delta_params = build_delta_params(params)
+ stable_positions = [get_stable_position(p, orig_delta_params)
+ for p in positions]
+ logging.info("Calculating delta_calibrate with: %s\n"
+ "Initial delta_calibrate parameters: %s",
+ stable_positions, params)
+ adj_params = ('radius', 'angle_a', 'angle_b',
+ 'endstop_a', 'endstop_b', 'endstop_c')
def delta_errorfunc(params):
+ delta_params = build_delta_params(params)
total_error = 0.
- for x, y, z in kin.get_positions_from_stable(positions, params):
+ for stable_pos in stable_positions:
+ x, y, z = get_position_from_stable(stable_pos, delta_params)
total_error += (z - z_offset)**2
return total_error
new_params = mathutil.coordinate_descent(
adj_params, params, delta_errorfunc)
logging.info("Calculated delta_calibrate parameters: %s", new_params)
- old_positions = kin.get_positions_from_stable(positions, params)
- new_positions = kin.get_positions_from_stable(positions, new_params)
- for oldpos, newpos in zip(old_positions, new_positions):
- logging.info("orig: %s new: %s", oldpos, newpos)
+ new_delta_params = build_delta_params(new_params)
+ for spos in stable_positions:
+ logging.info("orig: %s new: %s",
+ get_position_from_stable(spos, orig_delta_params),
+ get_position_from_stable(spos, new_delta_params))
self.gcode.respond_info(
"stepper_a: position_endstop: %.6f angle: %.6f\n"
"stepper_b: position_endstop: %.6f angle: %.6f\n"
diff --git a/klippy/kinematics/delta.py b/klippy/kinematics/delta.py
index 5a7a6ca6..84f8db78 100644
--- a/klippy/kinematics/delta.py
+++ b/klippy/kinematics/delta.py
@@ -12,8 +12,7 @@ SLOW_RATIO = 3.
class DeltaKinematics:
def __init__(self, toolhead, config):
# Setup tower rails
- stepper_configs = [config.getsection('stepper_' + n)
- for n in ['a', 'b', 'c']]
+ stepper_configs = [config.getsection('stepper_' + a) for a in 'abc']
rail_a = stepper.PrinterRail(
stepper_configs[0], need_position_minmax = False)
a_endstop = rail_a.get_homing_info().position_endstop
@@ -31,9 +30,9 @@ class DeltaKinematics:
sconfig.getfloat('arm_length', arm_length_a, above=radius)
for sconfig in stepper_configs]
self.arm2 = [arm**2 for arm in arm_lengths]
- self.endstops = [(rail.get_homing_info().position_endstop
- + math.sqrt(arm2 - radius**2))
- for rail, arm2 in zip(self.rails, self.arm2)]
+ self.abs_endstops = [(rail.get_homing_info().position_endstop
+ + math.sqrt(arm2 - radius**2))
+ for rail, arm2 in zip(self.rails, self.arm2)]
# Setup boundary checks
self.need_motor_enable = self.need_home = True
self.limit_xy2 = -1.
@@ -41,7 +40,7 @@ class DeltaKinematics:
for rail in self.rails])
self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
self.limit_z = min([ep - arm
- for ep, arm in zip(self.endstops, arm_lengths)])
+ for ep, arm in zip(self.abs_endstops, arm_lengths)])
logging.info(
"Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
self.max_z, self.limit_z))
@@ -115,7 +114,7 @@ class DeltaKinematics:
homing_speed/2.0, second_home=True)
# Set final homed position
spos = [ep + rail.get_homed_offset()
- for ep, rail in zip(self.endstops, self.rails)]
+ for ep, rail in zip(self.abs_endstops, self.rails)]
homing_state.set_homed_position(self._actuator_to_cartesian(spos))
def motor_off(self, print_time):
self.limit_xy2 = -1.
@@ -160,38 +159,15 @@ class DeltaKinematics:
self._check_motor_enable(print_time)
for rail in self.rails:
rail.step_itersolve(move.cmove)
- # Helper functions for DELTA_CALIBRATE script
- def get_stable_position(self):
- steppers = [rail.get_steppers()[0] for rail in self.rails]
- return [int((ep - s.get_commanded_position()) / s.get_step_dist() + .5)
- for ep, s in zip(self.endstops, steppers)]
+ # Helper function for DELTA_CALIBRATE script
def get_calibrate_params(self):
out = { 'radius': self.radius }
for i, axis in enumerate('abc'):
rail = self.rails[i]
- out['endstop_'+axis] = rail.get_homing_info().position_endstop
- out['stepdist_'+axis] = rail.get_steppers()[0].get_step_dist()
out['angle_'+axis] = self.angles[i]
out['arm_'+axis] = self.arm_lengths[i]
- return out
- def get_positions_from_stable(self, stable_positions, params):
- angle_names = ['angle_a', 'angle_b', 'angle_c']
- angles = [math.radians(params[an]) for an in angle_names]
- radius = params['radius']
- radius2 = radius**2
- towers = [(math.cos(a) * radius, math.sin(a) * radius) for a in angles]
- arm2 = [params[an]**2 for an in ['arm_a', 'arm_b', 'arm_c']]
- stepdist_names = ['stepdist_a', 'stepdist_b', 'stepdist_c']
- stepdists = [params[sn] for sn in stepdist_names]
- endstop_names = ['endstop_a', 'endstop_b', 'endstop_c']
- endstops = [params[en] + math.sqrt(a2 - radius2)
- for en, a2 in zip(endstop_names, arm2)]
- out = []
- for spos in stable_positions:
- sphere_coords = [
- (t[0], t[1], es - sp * sd)
- for t, es, sd, sp in zip(towers, endstops, stepdists, spos) ]
- out.append(mathutil.trilateration(sphere_coords, arm2))
+ out['endstop_'+axis] = rail.get_homing_info().position_endstop
+ out['stepdist_'+axis] = rail.get_steppers()[0].get_step_dist()
return out
def load_kinematics(toolhead, config):